
Total No. of Questions : 10]	SEAT No. :
P2473	[Total No. of Pages : 3

[5253]-196

		T.E. (Information Technology) (Semester - II) DESIGN AND ANALYSIS OF ALGORITHMS (2012, Battary)			
Time	(2012 Pattern) Time: 2½ Hours] [Max. Marks: 70				
Insti	ructio	ons to the candidates:			
	1)	Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8 and Q.9 or Q.10.			
	<i>2)</i>	Neat diagrams must be drawn wherever necessary.			
	3)	Figures to the right side indicate full marks.			
	4)	Assume suitable data if necessary.			
Q1)	a)	Explain direct proof and proof by counter example techniques.	[4]		
	b)	Define following asymptotic notations:	[6]		
		i) Theta			
		ii) Little Oh			
		iii) Little Omega			
		OR			
Q2)	a)	Write an algorithm for binary search using recursion and find out its becase, average case & worst case time complexities.	es [5]		
	b)	Consider $0/1$ knapsack problem by: $N=3$; $W=(4,6,8)$ and $P=(10,12,10)$ Using dynamic programming. Determine the optimal profit for knapsack of capacity 10.			
Q3)	a)	Explain the following terms with reference to Greedy Technique.i) Feasible solution and Optimal solutionii) Subset paradigm and ordering paradigm	[5]		
	b)	Write Warshall's algorithm for finding transitive closure and find its ti complexity.	ime [5]		

Q4) a) Apply Dijkstraw's algorithm for finding all shortest paths from a single source 'P' in a given graph.[5]

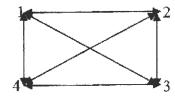
b) Write a note on Masters theorem.

[5]

- Q5) a) State the principle of backtracking: Explain the constraints used in backtracking with an example.[8]
 - b) Write an algorithm for Hamiltonian cycle problem using backtracking method. [8]

OR

- **Q6)** a) What is m-colorability optimization problem? Explain with an example. [8]
 - b) Find all possible solutions for 5- queens' problem using backtracking method. [8]


Q7) a) Explain the term:

[10]

- i) Branch and Bound.
- ii) LC search.
- iii) FIFO branch & bound.
- iv) Bounding function.
- v) Difference in LIFOBB and LCBB.
- b) Write and explain the upper bound function for 0/1 Knapsack problem by branch and bound method. [8]

OR

Q8) What is travelling sales person problem? Find the solution of the following travelling sales person problem using Dynamic approach and Branch and Bound approach.[18]

- **Q9)** a) What do you mean by P, NP, NP-Hard and NP-Complete problems? Give an example of each category. [8]
 - b) Explain the need and significance of parallel algorithms. [8]

OR

Q10)a) Explain the following:

[8]

- i) Computational complexity.
- ii) Decision problems.
- iii) Deterministic and Non-deterministic classes.
- iv) Complexity classes.
- b) Explain the possible parallel computations using complete binary tree. [8]

