Total No. of Questions : 10]

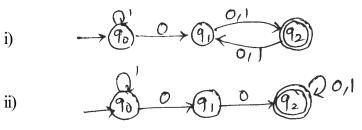
P2469

[Total No. of Pages : 3

SEAT No. :

[5253]-192

T.E. (I.T.)


THEORY OF COMPUTATION

(2012 Pattern) (End Semester)

[Max. Marks : 70 Time : 2½ Hours] Instructions to the candidates: Neat diagram must be drawn wherever necessary. 1) 2) Figures to the right indicate full marks. Assume suitable data if necessary. 3) Define the following with suitable examples [4] *Q1*) a) FA i) ii) **Regular Expression** Convert Mealy machine to Moore machine. [6] b) 0/n (Po) k 0/y

OR

Q2) a) Find the regular expression for the following : [4]

b) Prove that the following language is non regular, using pumping lemma.[6] $L = \{a^n b^n | n > 0\}$

Q3) a)	Write a CFG which generates the language L denoted by	[6]		
	i) $(a+b)*bbb(a+b)*$			
	ii) $\{0^m \ 1^n \ 0^{m+n} m, n \ge 0\}$			
b)	Write short note on chomsky hierarchy.	[4]		
OR				
Q4) a)	Convert the following grammar into GNF	[4]		
	$S \!\rightarrow\! ABA \left AB \right BA \left AA \right A \left B \right $			
	$A \rightarrow aA \mid a$			
	$B \rightarrow bB \mid b$			
b)	Define the following with suitable example.	[6]		
	i) Chomsky normal form			
	ii) Leftmost derivation			
	iii) Regular grammar			
Q5) a)	Design a post machine that accepts the following language. $L{=}\{a^nb^na^n n{\ge}0\}$	[8]		
b)	Explain the following using suitable examples.	[8]		
	i) Acceptance of a CFL by empty stack by a PDA.			
	ii) Acceptance of a CFL by final state by a PDA.			
OR				
Q6) a)	Construct a PDA for the language described as "The set of all str over $\sum = \{a, b\}$ with equal no. of a's and b's.	ings [8]		
b)	Give formal definitions of PDA and PM. Compare them.	[8]		

(Q7) a) Design a TM that adds two unary numbers. Show stepwise functioning of TM for the input: 11 + 111 [10]

[8]

- b) Write a short note on :
 - i) Power of TM over finite state machine.
 - ii) Universal turing machine

of 1's over $\sum = \{0,1\}$.

OR

- Q8) a) Construct TM for the following : [10]i) Language consisting of string having any number of 0's & even no.
 - ii) Increment the value of any binary number by one.
 - b) Define TM. Explain its working. Give the types of TM & applications of the same. [8]
- Q9) a) What is reducibility? What are undecidable problems? Describe at least four undecidable problems in case of TMs.[8]
 - b) Write a short note on encoding of TM. [8]

OR

Q10) a)	Write a short note on church Turing hypothesis.	[4]
----------------	---	-----

- b) Describe at least four undecidable problems in case of CFGs. [4]
- c) Define recursively enumerable languages and recursive languages with suitable example. [8]

**