Total No. of Questions : 12]

P2404

[Total No. of Pages : 3

[Max. Marks :70

SEAT No. :

[5253] -116

T.E. (Mechanical/Automobile) (Semester - II) NUMERICAL METHODS AND OPTIMIZATION (2012 Pattern)

Time : 2½ Hours] Instructions to the candidates:

- 1) Solve Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6 Q.7 or Q.8, Q.9 or Q.10, Q.11 or Q.12.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Use of programmable calculator is not permitted.
- 5) Assume suitable data if necessary.

Q1) An approximate value of π is given by $x_1 = \frac{22}{7} = 3.1428571$ & its true value is x = 3.1415926. Find the absolute & relative errors and define. [6]

OR

- **Q2)** Find the root of equation $\log_{10} x x^2 + 2 = 0$ by regula falsi method correct to two decimal places. [6]
- *Q3)* Draw the flowchart for Gauss elimination method. [6]

OR

Q4) Solve the following equations with Thomas algorithm. [6]

 $\begin{array}{l} x_1 + 2x_2 = 4 \\ -x_1 + x_2 + 2x_3 = 1 \\ x_2 + 3x_3 + x_4 = 7 \\ 2x_3 + 2x_4 = 8 \end{array}$

P.T.O.

- Q5) a) Minimize $Z = 80x_1 + 120x_2$ Subject to $x_1 + x_2 \le 9$ $x_1 \ge 2$ $x_2 \ge 3$ $20x_1 + 50x_2 \le 300$ $x_1, x_2 \ge 0$ (use graphical method)
 - b) Using Newton's method calculate the maximum value of the equation $2\sin x 0.1x^2$. Take lmitial guess 2.5 and do 3 iterations. [3]

[5]

[8]

OR

Q6) Maximize
$$z = 1600x + 1500y$$

Subject to $5x + 4y \le 500$

 $15x + 16y \le 1800$ $x \ge 0, y \ge 0$

$$x \ge 0, y \ge 0$$

(use simplex method)

(Q7) a) Using the method of least square, fit the curve $y = ax^2 + \frac{b}{x}$ to the following data. [8]

	U			
x	1	2	3	4
у	-1.51	0.99	8.88	7.66

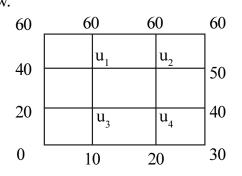
b) Find the value of y for x = 0.5 for the following table of x, y values using Newton's forward difference formula. [8]

x	0	1	2	3	4
у	1	5	25	100	250

Q8) a) For the data given in following table find the equation to best fitting curve of the form $xy^a = b$. [8]

x	200	150	100	60	40	10
у	1	1.5	1.8	2.4	4.1	6.5

[5253] - 116


b) Draw the flow chart for Lagrange's interpolation.

Q11) a) Draw flow chart for Euler method.

- a) Use Simpson's $1/3^{rd}$ rule to find $\int_{0}^{0.6} e^{-x^2} dx$ by taking seven ordinates.[8] **Q9**)
 - b) Using Trapezoidal rule, evaluate $I = \int_{1}^{2} \int_{1}^{2} \frac{dxdy}{x+y}$ taking four sub -[8] intervals.

OR

- **Q10)** a) Draw flowchart for Gauss Legendre 2 point and 3 point method. [8]
 - b) Use Trapezoidal rule with four steps to estimate the rule of integral $\int_0^2 \frac{x}{\sqrt{2+x^2}} \, dx$ [8]
 - b) Solve the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ for the square mesh as shown in diagram below.

- *Q12)* a) Write down step by step procedure for solution of PDE of Laplace equation and develop a flowchart to write a program. [8]
 - b) A second order ODE is transformed into first order ODE as, $\frac{dy}{dx} = z, y(0) = 2$ and $\frac{dz}{dx} = 0.5x - y, z(0) = 0$. Estimate the value of y and z at x = 0.2 take h = 0.1. [10]

[5253] - 116

[8]

[8]