Total No. of Questions: 10]	SEAT No.:

[5354]-522

B.E. (Civil Engg.) (End Semester) (Theory) ADVANCED TRANSPORTATION ENGG. (2012 Pattern) (Elective - IV)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

P3036

- 1) Answer Q1 or 2, Q3 or 4, Q5 or 6, Q7 or 8, Q9 or 10.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Assume Suitable data if necessary.
- *Q1)* a) With reference to the origin and destination surveys, explain the following terms. [5]
 - i) Cordon Line
 - ii) Sampling size
 - b) Write a note on Modal Split

[5]

[Total No. of Pages: 6

OR

- **Q2)** a) Estimate the total number of trips using Modesto Model based on the following data.
 - i) No. of dwelling unit = 5000
 - ii) No of cars owned per dwelling unit = 2
 - iii) Average number of persons per house = 4
 - iv) Social Rank Index = 2.5
 - v) Urbanization Index = 4
 - b) How has the National Highway Development Projects (NHDP) contributed to the overall growth of the country? [5]
- Q3) Enhancing mobility while at the same time reducing congestion, accidents and pollution is a common challenge especially in India. What are the initiatives that you as transportation planner propose to achieve the balance between both?
 [10]

P.T.O.

Q4) a)	Explain the Benefit Cost Method of economic evaluation. What are the criteria for deciding the priority of projects based on B/C ratio? [5]			
b)	Write a note on the importance of Pavement Management System. [5]			
Q5) a)	With reference to moving vehicle survey, explain the objective, procedure. data obtained and advantage of the survey. [10]			
b)	State the advantages of mechanical methods of conducting traffic surveys over the manual methods. Give any two examples of mechanical counters or sensors used for surveys. [6] OR			
Q6) Wri	te notes on the following			
a)	Level of Service (LOS) of a road. [6]			
b)	Passenger Car Unit [5]			
c)	Automated Signals [5]			
Q7) a)	Design a flexible pavement as per IRC 37-2001 using the following data.			
	Also draw a typical cross section showing all the basic layers. [10]			
	i) Type of road = Four lane single carriageway			
	ii) CVPD in the year $2012 = 1000$ (sum of both direction)			
	iii) Expected year of completion = 2016			
	iv) Traffic growth rate = 7.5%			
	v) Design Life = 10 years			
	vi) Vehicle Damage factor = 3.5			
	vii) Design CBR = 5%			
b)	With neat sketches explain any 3 types of distresses on flexible pavements. [6]			
00)	OR OR			
Q8) a)	The rebound deflection values for 5 spots on a stretch of National Highway with heavy traffic are given below. Find the mean, standard and characteristic deflection. [5]			
	Rebound deflection in mm: 1.5, 2.0. 1.25. 1.36. 1.45			
b)	State the differences between IRC 37, 2001 and the revised IRC 37-2011. [5]			

c)	Witl	n reference to Benkelman Beam Survey, explain the following: [6]
	i)	Correction for temperature
	ii)	Correction for seasonal variation in subgrade moisture content.
Q9) a)	From the spave vari	design traffic for a major road with heavy traffic is found to be 77 msa. In the BBD survey, the mean value of deflection $(D_m) = 1.28$ mm and standard deviation of deflection = 0.26 mm. The temperature of the ement during study is 45°C. and the correction factor for seasonal atton in subgrade moisture content = 1.3. Determine the thickness of overlay if DBM binder course and BC surface course is to be adopted. [8]
b)	-	lain the concept behind the design of rigid pavement in comparison at of a flexible pavement. [6]
c)		at are the critical combinations of stresses for a cement concrete ement? [4]
<i>Q10)</i> a)	Des	ign the tie bars considering plain bars for the following data: [8]
	i)	Slab thickness = 32 cm
	ii)	Lane width –3.5 m
	iii)	Coefficient of friction = 1.5
	iv)	Density of concrete = 2500 kg/m^3
	v)	Allowable tensile stress in plain bars = 1200 kg/cm ²
	vi)	Allowable bond stress = 17 kg/cm^2
	vii)	Diameter of tie bar = 12 mm
b)		at are the objectives of providing tie bars and dowel bars? Illustrate a the help of a neat sketch. [4]

Explain the construction procedure of cement concrete pavement. [6]

THICKNESS & COMPOSITION (mm)

CBR 5 %

CBR 5 %

TRAFFIC (msa)

SDBC SDBC SDBC

Cumulative	Total	PAVEMI	PAVEMENT COMPOSITION	MPOSITIC	Ž
Traffic	Pavement	Bitumin	Bituminous Surfacing	Granular	Granular
(msa)	Thickness	Wearing	Binder	Base	Sub-base
	(mm)	Course	Course	(mm)	(mm)
		(mm)	(mm)	<u> </u>	
_	430	20 PC		225	205
2	490	20 PC	50 BM	225	215
w	530	20 PC	50 BM	250	2308
5	580	25 SDBC	55 DBM	250	250
10	660	40 BC	70 DBM	250	300
)					

PLATE I - RECOMMENDED DESIGNS FOR TRAFFIC RANGE 1-10 msa

PAVEMENT DESIGN CATALOGUE

PAVEMENT DESIGN CATALOGUE

Cumulative Total PAVEMENT COMPOSITION Course (msa) Thickness (mmm) Course (mmm) Co
FAVEMENT DESIGNS FOR TRAFFIC RANGE 1-10 msa CBR 6% CBR 6% CBR 6% CBR 6% CBR 6% PAVEMENT COMPOSITION Protection of Pavement (msa) Bituminous Surfacing Granular (mm) Granular Sub-base (mm) 1 390 20 PC 50 BM 225 165 2 450 20 PC 50 BM 225 175 3 490 20 PC 50 BM 250 190 5 535 25 SDBC 50 DBM 250 210 10 1 615 40 BC 65 DBM 250 260
CBR 6% Course (mm) CDBR 6% C
CBR 6% PAVEMENT COMPOSITION Bituminous Surfacing Granular Granular Granular Sub-base (mm) Course (mm) 20 PC 20 PC 20 PC 20 PC 50 BM 25 SDBC 50 DBM 250 260 260
FOR TRAFFIC RANGE 1-10 msa 5% MENT COMPOSITION US Surfacing Granular Base (mm) (mm) Course (mm) 225 165 50 BM 225 175 50 DBM 250 190 50 DBM 250 260
FIC RANGE 1-10 msa IPOSITION Granular Base (mm) Granular Sub-base (mm) 225 165 225 175 250 190 250 210 250 260
N Granular Sub-base (mm) 165 175 190 260

	1	THICKN	ESS	COMP	051110	_	vj
⊠ 688	ĺ	· · ·	200	, °°		700	
Всв						6	
D8M	TRAI					CBR 6%	
0 K	TRAFFIC (msa)		7			•	
# ec	ی ق		7				
SDBC	á						
NZ PC							

[5354]-522

THICKNESS & COMPOSITION (mm)

	-	CBR 5%	o'	
Cumulative	Total	PAVEM	PAVEMENT COMPOSITION	NOITION
Traffic	Pavement	Bituminou	Bituminous Surfacing	Granular Base
(msa)	Thickness	ВС	DBM	& Sub-base
	(mm)	(mm)	(mm)	(mm)
10	660	40	70	
20	690	40	100	7×.
30	710	40	120	Base = 250
50	730	40	140	9
100	750	50	150	Sub-base = 300
150	770	50	170	
9000				

,
2150
720
50
160

THICKNESS & COMPOSITION (

(msa) Traffic Cumulative 30 20 8 50 Total (mm) Thickness Pavement 640 615 700 675 655 Bituminous Surfacing (mm) 40 40 40 6 PAVEMENT COMPOSITION CBR 6% 50 DBM (mm) 140 65 105 125 90 Sub-base = 260 Base = 250Granular Base & Sub-base (mm)

PAYEMENT DESIGN CATALOGUE
PLATE 2 - RECOMMENDED DESIGNS FOR TRAFFIC RANGE 10-150 msa

PLATE 2 - RECOMMENDED DESIGNS FOR TRAFFIC RANGE 10-150 msa

PAVEMENT DESIGN CATALOGUE

829 **6**28

89

■ DBM

BC

829 **6**28

68

108 M

96

TRAFFIC (msa)

TRAFFIC (msa)

Dig 9 Overlay Thickness Design Curves

