Total No. of Questions :8]

SEAT No. :

P4028

[5351] 108

F.Y.

ENGINEERING

Engineering Mathematics - II

(2015 Pattern) (Semester - II)

Time : 2 Hours]

Instructions to the candidates:

- 1) Attempt Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6 and Q.7 or Q.8.
- 2) Neat diagram must be drawn wherever necessary.
- 3) Figure to the right indicates full marks.
- 4) "Assume suitable data, if necessary and clearly state."
- 5) Use of electronic pocket calculator is allowed.
- *Q1*) a) Solve the following.
 - i) Solve the following differential equation $(4+e^{2x})\frac{dy}{dx} = ye^{2x}$. [4]

ii) Solve,
$$x(x-y)\frac{dy}{dx} = y(x+y)$$
. [4]

b) A steam pipe 40cm in diameter contains steam at 150°C and is protected with a covering 10cm, thick for which k=0.0012, If the temperature of the outer surface of the covering is 30°C, find the temperature at a distance 25cm from the center of the pipe under steady-state condition. [4]

OR

Q2) a) Solve
$$\cos x \frac{dy}{dx} + y = \sin x$$
.

- b) i) A body at temperature 100°C is placed in a room whose temperature is 25°C and cools to 80°C in 10 minutes. Find the time when the temperature will be 60°C. [4]
 - ii) a resistance of 150 ohms and an inductance of 0.3 H are connected in series with a battery of 25 volts. Find the current in the circuit if i=0 at t=0. [4]

[Max. Marks :50

[Total No. of Pages :3

P.T.O.

[4]

- **Q3**) a) Obtain Fourier series expansion for $f(x) = x^2$ in the interval -1 < x < 1, $f(x+2l) = f(x), \forall x$. [5]
 - b) Evaluate $\int_0^\infty x^7 e^{-2x^2} dx$. [3]
 - Solve any one. i) Trace the curve $r = a \cos 2\theta$ [4]
 - ii) Trace the curve $xy^2 = a^2(a-x)$ [4] OR

Q4) a) If
$$u_n = \int_0^\infty \tan^n \theta d\theta$$
 then show that $n(U_{n+1} + U_{n-1}) = 1$. [4]

b) If
$$f(x) = \int_{a}^{x} (x-t)^{2} G(t)$$
 at, then. [5]

show that $\frac{d^3f}{dx^3} - 2G(x) = 0$.

- c) Find the primeter of the cordioide $r = a(1 + \cos \theta)$ from $\theta = 0$ to $\theta = \frac{\pi}{3}$.[4]
- **Q5)** a) Find the equation of the sphere for which the circle $x^2 + y^2 + z^2 + 7y 2z + 2 = 0$, 2x + 3y + 4z = 8 is a great circle. [5]

b) Find the equation of right circular cone whose vertex is (1,1,1), axis the

line
$$\frac{x-1}{1} = \frac{y-1}{2} = \frac{z-1}{3}$$
 and semi vertical angle $\frac{\pi}{4}$. [4]

c) Find the equation of a right circular cylinder having its radius as 03 units and equation of whose axis is $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-2}{3}$. [4]

2

[5351] - 108

c)

P.T.O.

- **Q6)** a) Find the sphere through the circle $x^2 + y^2 + z^2 = 4$, z = 0 meeting the plane x + 2y + 2z = 0 in a circle of radius 3. [5]
 - b) Find the equation of the right circular of the cone with vertex (-1,0,0), semi vertical angle 60° and axis is x axis. [4]
 - c) Find the equation of a right circular cylinder having its radius as 04 units and equation of whose axis is $\frac{x+1}{1} = \frac{y+1}{-1} = \frac{z+1}{1}$. [4]

Q7) Attempt any two of following

a) Change the order of integration
$$\int_{0}^{a} \frac{\int_{0}^{y+a}}{a^2 - y^2} f(x, y) dx dy ?$$
 [7]

- b) Find the volume of tetrahedron bounded by the co-ordinate planes and the plane $\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1$? [6]
- c) Find moment of inertia of the portion of the parabola $y^2 = 4ax$, bounded by x-axis and latus rectum, about x-axis, if density at each point varies as the cube of the abscissa? [6]

- Q8) Attempt any two of following
 - a) Evaluate $\iint_{R} x^{2}y^{2}dxdy$ over the positive quadrant of $x^{2} + y^{2} = 1$? [7]
 - b) Evaluate $\iint \frac{dxdydz}{\sqrt{1-x^2-y^2-z^2}}$ taken throughout the volume of the sphere $x^2 + y^2 + z^2 = 1$ in positive octant? [6]

c) ABCD is a square plate of side a and 0 is the mid point of AB. If the surface density various as the square of distance from 0, show that the center of gravity of the plate is at a distance $\frac{7a}{10}$ form 0? [6]

[5351] - 108

× × × × × ~