Total No. of Questions—8] [Total No. of Printed Pages—2]				
Seat No.	[5352	2]-163		
S.E. (Computer Engineering) (I Sem.) EXAMINATION, 2018				
DIGITAL ELECTRONICS AND LOGIC DESIGN				
(2012 PATTERN)				
Time	: Two Hours Maximum Max	rks : 50		
N.B. :— (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4,				
Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.				
(ii) Figures to the right indicate full marks.				
	(iii) Assume suitable data, if necessary.			
O(1)	Minimize the following function using K-map & realize using Logic gates.	[4]		
(\mathcal{Y}^{I}) a)	F(A,B,C,D) = $\sum m(1,5,7,13,15) d(0,6,12,14)$	[+]		
. b)	Convert following:	[2]		
	$(46)_{10} = (?)_8$			
c)	List the differences between CMOS and TTL	[6]		
	OR			
<i>Q2)</i> a)	Convert the following numbers into binary numbers.	[4]		
(22) uj	i) (37)8 ii) (25.5)10	LTICO		
		9		
b)	Explain standard TTL Characteristics in detail	[6]		
c)	Represent the following signed number in 2s complement method:	[2]		
	i) + 25 ii) -25			
031				
<i>Q3)</i> a)	Design a 3-bit Excess 3 to 3-bit BCD code converter using logic gate.	[6]		
b)	Design Mod-5 synchronous counter using JK FFs.	[4]		
c)	Draw the excitation table of J-K Flip-flop.	[2]		

		OR S	
Q4)	a)	Design a 4-bit Binary to Gray code converter circuit using logic gates	[4]
	b)	Design a Mod 20 counter using decade counter IC 7490	[6]
	c)	Perform the following: $(11011)_2 + (0101)_2 = (?)_2$	[2]
Q5)	a)	State and explain basic component of ASM chart? Also explain the Salient features of ASM chart?	[7]
	b)	Write VHDL code 4:1 Multiplexer using Behavioral and Dataflow modeling style.	[6]
		or 35°	
Q6)	a)	Design a sequence generator circuit to generate the sequence 1-2-3-7-1 using Multiplexer Controller based ASM approach.	[7]
		Consideration:	
		i) If control input $C = 0$, the sequence generator circuit in the same state.	
		ii) If control input $C = 1$, the sequence generator circuit goes into next state.	
•	b)	Explain the following statements used in VHDL with suitable examples: i) CASE. ii) Wit h - S e l e c t - When. iii) Loop statement.	[6]
Q7)	a)	Comparison between PROM, PLA and PAL	[7]
	b)	Draw and explain the basic architecture of FPGA.	[6]
		OR	
Q8)	a)	A combinational circuits is defined by the function	[7]
		$F_1(A,B,C) = \sum m(0,1,3,7)$	
		$F_2(A,B,C) = \sum m(1,2,5,6)$	
		Implement this circuit with PLA.	
	b)	Comparison between PROM, PLA and PAL Draw and explain the basic architecture of FPGA. OR A combinational circuits is defined by the function $F_1(A,B,C) = \sum m(0,1,3,7)$ $F_2(A,B,C) = \sum m(1,2,5,6)$ Implement this circuit with PLA. $A \text{ combinational circuits is defined by the function}$ $F_1(A,B,C) = \sum m(0,1,5,6,7)$	[6]
		Implement this circuit with PAL.	
[5352]-163 2			