Total No. of Questions—8] [Total No. of Printed Pages—3						
Seat No.				[53	52]-563	
S.E. (Computer Engineering) (I Sem.) EXAMINATION, 2018						
DATA STRUCTURE & ALGORITHMS						
(2015 PATTERN)						
Time : Two Hours				Maximum N	larks : 50	
N.B. := (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4,						
Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.						
	(11)	Draw neat diagrams	whereve	r necessary.		
	(<i>iii</i>)	Assume suitable dat	a, if nece	ssary.		
1. (<i>e</i>	a) Defin	ne and explain the f	ollowing t	erms :	[3]	
	(<i>i</i>)	Data				
	(<i>ii</i>) Data structure					
	(<i>iii</i>)	Algorithm.				
(<i>k</i>	b) Give	Give pseudo C/C++ code to reverse the string. [3]				
(6	(c) Explain the divide and conquer strategy with suitable example.					
 (c) Explain the divide and conquer strategy with suitable example. Comment on its time complexity. [6] Or 2. (a) Define and explain the following terms : [4] (i) Sequential organization (ii) Linear data structure (iii) Ordered list (iv) Sparse matrix. 						
Or						
2. (<i>é</i>	a) Define and explain the following terms : [4]					
	(<i>i</i>)	Sequential organizati	on	5 18		
	(<i>ii</i>)	Linear data structu	re	62.		
	(<i>iii</i>)	Ordered list		V		
	(iv)	Sparse matrix.	0.2	Ý		
					P.T.O.	

- Explain polynomial representation using an array with suitable (b)example. [2]
- Explain the Asymptotic notation Big O, Omega and Theta with (*c*) suitable example. [6]
- Write a pseudo C/C++ code to insert node into a singly 3. (*a*) linked list. [3]
 - (b)Explain Generalised linked list with suitable example. [3]
 - Explain evaluation of postfix expression using stack with (*c*) f. 69.1. suitable example. [6]
- Or Give pseudo C/C++ code to implement the following operations 4. (*a*) on linked stack : [4]
 - (i)Create
 - Push data. (ii)
 - Explain the stepwise conversion using stack for the given infix (b)121 expression to the postfix expression : A * B + C * D.
 - Write pseudo C/C++ code for polynomial addition using singly (*c*) linked list. [6]
- xamp Define the following terms with example : [6] 5. (a)
 - (i)Linear queue
 - (ii)Circular queue
 - Priority queue. (*iii*)

[5352]-563

 $\mathbf{2}$

Write pseudo C/C++ code to implement priority queue (b)operations. [7]

- Explain linear queue and circular queue with suitable 6. (a)example. Give the advantages of circular queue over linear queue. [6]
 - Write pseudo C/C++ code to implement linked queue. (b)[7]

Sort the following numbers using insertion sort : 7. (a)

55, 85, 45, 11, 34, 05, 89, 99, 67.

Discuss its time complexity and space complexity. [6]

Explain sequential search and binary search with appropriate (b)example. Comment on their data organization, time complexity and space complexity. [7]

- Explain Merge sort using the following example : 8. (a)18, 13, 12, 22, 15, 24, 10, 16, 19, 14, 30. Discuss its time and space complexity.
 - 022. 10.22. 10.22. Write a pseudo C/C++ code to sort the data using bucket (b)sort in ascending order. [7]

[6]

[5352]-563

3