Total No. of Questions : 10]	SEAT No. :
P3321	[Total No. of Pages : 3

[5353]-196

T.E. (Information Technology) DESIGN AND ANALYSIS OF ALGORITHMS

(2012 Pattern)

Time: 2½ Hours]		[Max. Marks: 70
-----------------	--	-----------------

Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7or Q8, Q9 or Q10.
- 2) Neat diagram must be drawn whenever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Assume Suitable data if necessary.
- Q1) a) Explain direct proof & proof by counter example techniques. [4]
 - b) Define following asymptotic notations: [6]
 - i) Theta
 - ii) Little oh
 - iii) Little Omega

OR

- **Q2)** a) Setup a recurrence relation to compute n! and solve it.
- ren
- b) Consider the following letters with their probability.

Character	a	b	c	d	e
Probability	0.5	0.25	0.125	0.625	0.031

Find out Huffman coding for a, b, c, d, e.

- Q3) a) Show the steps in multiplying the following two integers using efficiency integer multiplication method 2101×1130 . [5]
 - b) Explain the following terms with reference to Greedy Technique [5]
 - i) Feasible solution and optimal solution
 - ii) Subset paradigm and ordering paradigm

Q4) a) Apply Dijkstra's algorithm for finding all shortest paths from a single source 'p' in a given graph [5]

b) Explain the concept of divide and conquer technique. Write master theorem. [5]

Q5) a) Let $w = \{5, 10, 12, 13, 15, 18\}$, m = 30. Find all possible subsets of w that sum to m. Draw the portion of state space tree that is generated. [8]

b) Write a recursive backtracking algorithm for m-coloring of the graph.[8]

OR

Q6) a) What is m-colorability optimization problem? Explain with an example. [8]

b) Find all possible solutions for 5 queens' problem using backtracking method. [8]

Q7) What is travelling salesman problem? Find the solution of following travelling salesman problem using branch and bound method.[18]

∞	20	30	10	11
15	∞	16	4	2(
3	5	∞	2	4
19	6	18	∞	3
16	4	7	16	8

Cost Matrix

What is LC Search? Explain in detail control abstraction for LC search.[8] Solve the following instance of 0/1 knopsack problem by FIFO branch b) and bound approach. n = 4, M = 15 and $(P_1, P_2, P_3, P_4) = (10, 10, 12, 18);$

 $(W_1, W_2, W_3, W_4) = (2, 4, 6, 9)$ [10]

- What do you mean by P, NP, NP-Hard and NP-complete problems? **Q9**) a) Give an example of each category. [8]
 - Explain the need and significance of parallel algorithms. b) [8]

OR

Explain the following: *Q10*)a)

Q8) a)

[8]

- Computational complexity i)
- Decision problems ii)
- Deterministic and Non deterministic classes iii)
- Complexity classes
- Explain the possible parallel computations using complete binary tree.[8] b)

