Total No. of Questions: 12]	SEAT No.:	

P3253 [Total No. of Pages: 3

[5353] - 116

T.E. (Mechanical / Automobile) (Semester - II) NUMERICAL METHODS AND OPTIMIZATION (2012 Pattern)

Time: 2½ Hours] [Max. Marks:70

Instructions to the candidates:

- Solve Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8, Q.9 or Q.10, Q.11 or Q.12.
- Neat diagrams must be drawn wherever necessary.
- Figures to the right indicate full marks.
- Use of programmable calculator is not permitted.
- Assume suitable data, if necessary.
- Q1) Moment at a point in a cantilever carrying a uniformly distributed load is,

 $M = \frac{Pl^2}{2}$, where P is the intensity of UDL and *l* is the distance. If the error in the calculation of P is $0.0 \, 1 \, \text{kN/m}$ and l is $0.02 \, \text{m}$, find the error in calculation of M at l = 3.5 and P = 2 kN/m. [6]

Q2) Using five iteration of bi-section method determine root of the following equation

$$f(x) = x^3 - x^2 - x - 1 = 0$$
 Take initial guess $x_1 = 1.7$ and $x_2 = 1.9$.

Q3) Draw the flowchart for Gauss elimination method.

[6]

simul *Q4*) Using Gauss - Seidal method solve the following set to simultaneous equations. Solve upto four iterations. [6]

$$x_1 + 20x_2 + 9x_3 = -23$$

$$2x_1 - 7x_2 - 20x_3 = -57$$

$$20x_1 + 2x_2 + 6x_3 = 28$$

Q5) a) Minimize
$$Z = 80x_1 + 120x_2$$

Subject to $x_1 + x_2 \le 9$
 $x_1 \ge 2$
 $x_2 \ge 3$
 $20x_1 + 50x_2 \le 300$
 $x_1, x_2 \ge 0$

(Use graphical method)

Write a short note on Simulated Annealing. b)

[3]

[5]

OR

Q6) Maximize
$$Z = 50,000x_1 + 12,000x_2$$

Subject to
$$75x_1 + 15x_2 \le 1000$$

$$100x_1 + 30x_2 \le 1500$$
$$45x_1 + 10x_2 \le 750$$

$$45x_1 + 10x_2 \le 750$$

 $x_1, x_2 \ge 0$ And

(Use simplex method)

[8]

- Using the following points, fit a polynomial using Lagrange's method **Q7**) a) and find the value of y at x = 2.7[8] (2.10,5.14)(2.50,6.78)(3.10,10.29)(3.50,13.58)
 - Determine the values of a and b so that the equation $y = ax^b$ best fits the b) following data by the method of least squares.

X	25	20	12	9	7	5,
y	0.22	0.2	0.15	0.13	0.12	0.1

OR

Using the method of least square, fit the curve $y = ax^2 +$ **Q8**) a)

data.

[8]

x	1	2	3	4
y	-1.51	0.99	8.88	7.66

Draw the flowchart for Newton's forward difference interpolation. b)

[5353] - 116

- **Q9)** a) Use Simpson's $1/3^{\text{rd}}$ rule to find $\int_0^{0.8} (\log_e(x+1) + \sin(2x)) . dx$ where x is in radians. Divide the entire interval in 8 strips. [8]
 - b) Find $\int_0^1 \int_0^1 e^{(x+2y)} dx.dy$, using Simpson's $1/3^{rd}$ rule. Take h = k = 0.5. [8] OR
- Q10)a) Draw flowchart for Gauss Legendre 2 point and 3 point method. [8]
 - b) Use Trapezoidal rule with four steps to estimate the rule of integral

$$\int_0^2 \frac{x}{\sqrt{2+x^2}} dx$$
 [8]

- Q11)a) Solve the differential equation $\frac{dy}{dx} = \sqrt{(x + \sqrt{y})}$ using Euler's method under the boundary conditions x = 2 and y = 4 find y at x = 2.5 in 10 steps. [8]
 - b) Solve the equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{1}{xy}$ corresponding to grid shown in following fig

- Q12)a) Write down step by step procedure for solution of PDE of Laplace equation and develop a flowchart to write a program.[8]
 - b) Initial temperature within an insulated cylindrical metal rod of 4 cm length is given by, T = 50 (4 x), $0 \le x \le 4$, where x is distance from one end in cm. Both the ends are maintained at 0°C. Find the temperature as a function of x and t ($0 \le t \le 1.5$) if the heat flow is governed by

$$\frac{\partial T}{\partial y} = 2 \frac{\partial^2 T}{\partial x^2}. \ \Delta x = 1, \Delta t = 0.25$$