DECEMBER 2018 / END-SEM (SOLUTION)

F. Y. B.TECH. (COMMON) (SEMESTER - I)

COURSE NAME: BASIC ELECTRICAL ENGINEERING

COURSE CODE: ET 10182A

(PATTERN 2018)

	(11111ERN 2018)		
Time	:: [2 Hours] [M	lax. Marks: 50]
Q 1)	a)		
i. ii.	Current in 5Ω considering only source of $4V = I' = 0.4236A$ Current in 5Ω considering only source of $6V = I'' = 0.3529$ A		2M
iii.	Current flowing through $5\Omega = I$ $_{5\Omega} = I$ '- I ''= 0.0706 A		1M 1M
	OR		
b)	The second secon		
i.	The venin's equivalent resistance $= R_{EQ} = 4.44 \Omega$		2M
ii.	Thevenin's voltage = V_{TH} = 0.67V		1M
iii.	Current flowing through $5\Omega = I_{5\Omega} = V_{TH}/(R_{EQ} + R_L) = 0.0706 \text{ A}$		1M
ii. For	wing impedance triangle rmula of impedance: $Z=R+j X_L(\Omega)$ or $Z=V/I(\Omega)$ rmula of phase angle: $\phi = \tan^{-1}(X_L/R)$ degrees or $\phi = \cos^{-1}(R/Z)$ defined as	egrees	1M 1M 1M
iv. Nat	ture of power factor: Lagging	grees	1M
	OR		11/1
b)			
i. Cap	acitive reactance= $X_C = 1/2\pi fC = 63.66 \Omega$		1M
iii Do	bedance of circuit= $Z = 8 - j63.66 \Omega = 0.00$		1M
111. 1 0	wer factor of circuit= $\cos \phi = R/Z = \frac{1}{2}$ leading		2M
Q 3) a			
	two advantages of single phase autotransformer		
ii. Any	two disadvantages of single phase autotransformer		2M
iii. Any	two relevant applications of single phase autotransformer	234	2M
3/5	OR	2M	
b)	The State of the S		
i. Deri	vation of e.m.f. equation of single phase transformer (4 steps)		4M
ii.Stati	ng expressions for e.m.f. induced in primary and secondary winding		2M
			- IVE

b)

i. Output energy= Eo= mgh= 176580 J	1M
ii. Input energy= Ein= Eo/ efficiency= 294300 J	1M
iii. Power input= Ein/ time= 4905 W	1M
iv Daily Cost of energy Power in KW * time * rate = Ds 44 145/	1M

OR

Q 5) a)

Energy consumption by different appliances per day:

	- By	
i.	4 fluorescent tubes each of 40 W for 5 hours= 4*40* 5= 800 Wh	1M
ii.	2 kW electric geyser for 1 hour= 2000 Wh	1M
iii.	800 W electric iron for 45 minutes= 800*0.75= 600 Wh	1M
iv.	Other miscellaneous load of 500 W for 3 hours = 1500 Wh	1M
v. Ele	ectricity bill for a month =4.9 Kwh* 30* 3.5= Rs. 514.5/-	2M

b) Any four features of a switchgear e.g. Reliability, discrimination, quick operation, provision for manual control, provision for instruments etc. (1 mark each)

Q 6) a)

i. Eg = Φ ZNP/60A (stating formula)	1M
ii. For Lap winding $A = P = 8$	1M
iii. Using formula, Z = 1260	2M
iv. No. of conductors per slot = $Z/$ no of slots = $1260/140$	= 9 2M

b) Speed- armature current characteristics (2 marks) and torque-armature current characteristics (2 marks) of a dc shunt motor 4M

OR

Q 7) a)

i.	Ish = 220/100 = 2.2 A	1M
ii.	Ia = 22 - 2.2 = 19.8 A	1M
iii.	Eb = V - IaRa = 220 - (19.8)(0.5) = 210.1 V	1M
iv.	Eb = Φ ZNP/60A = 210.1 V; For Lap winding A = P = 4	1M
v.	$N = 60EbA/\Phi ZP = 2101 \text{ rpm}$	1M
vi.	$Tg = 0.159 (PZ/A) \Phi Ia = 18.90 N-m$	1M

b) Classification of dc machines (separately excited, shunt, series and compound)

4M

Q 8) a) Each point for 1 mark

6M

Basis For Comparison	Slip Ring Motor	Squirrel Cage motor
Rotor construction	Cylindrical laminated core with parallel slots and each slot consist one bar.	The slots of the rotor are not parallel, but are skewed.
Starting Torque	High	Low
Maintenance requirement	Frequent maintenance required	Less maintenance required
Cost	Costly	Cheap
Losses	High	Low
Efficiency	Low	High

b) Power flow diagram in case of a three phase induction motor.

4M

OR

Q 9) a) Capacitor-start single-phase induction motor

Diagram

2M

Advantages

2M

- i. Improved or higher starting torque than split phase motors.
- ii. Better performance as compared to split phase induction motor

Disadvantages (any 1)

1M

- i. Low power factor under running conditions
- ii. Since the auxiliary winding is only a light winding, the motor does not develop sufficient torque to start heavy loads.

Applications (any 1)

1M

Conveyors, grinder, refrigerators, air conditioners, compressor, etc.

b)

i. Ns= 120f/p= 1500 r.p.m.	1M
ii. N= Ns(1-s)= 1440 r.p.m.	1M
iii. Frequency of rotor current= fr= sf= 1.5 Hz	1M
iv. Since at standstill, s=1, hence fr at standstill= f= 50 Hz	1M

- Q 10) Multiple choice questions (1 mark each)
- a) The laminated construction is used to reduce
 - i. copper losses
 - ii. hysteresis loss
 - iii. eddy current losses
 - iv. friction and windage losses
- b) The nature of speed-torque characteristics of a DC series motor is
 - i. a straight line
 - ii. parabolic
 - iii. exponential
 - iv. rectangular hyperbola
- c) Which of the following is the correct expression for gross torque developed by armature in case of a lap wound DC motor.

- i. 0.159ZФIa
- іі. 0.159 (PZ/2) ФІа
- iii. 0.159 (2PZ) ΦIa
- iv. 0.159 (PZ/2N) ΦIa
- d) Find the number of poles required, when the frequency is 50Hz and synchronous speed of the motor is 500 rpm
 - i. 10
 - ii. 12
 - iii. 24
 - iv. 6
- e) At stand still condition of an induction motor, the value of slip is
 - i.
 - ii. 0
 - iii. infinite
 - iv. between 0 and 1
- f) A single-phase induction motor is
 - i. inherently self-starting with high torque
 - ii. inherently self-starting with low torque
 - iii. inherently non-self-starting with low torque
 - iv. inherently non-self-starting with high torque