G.R. No.

U118-1011 (ESE)

DECEMBER 2018 / END-SEM

F. Y. B.TECH. (COMMON) (SEMESTER - I)

COURSE NAME: ENGINEERING CHEMISTRY

COURSE CODE: [ES10184B]

(PATTERN 2018)

Time: [2 Hours]

[Max. Marks: 50]

- (*) Instructions to candidates:
- 1) Attempt Q.1, Q.2, Q.3, Q.4 OR Q.5, Q.6 OR Q.7, Q.8 OR Q.9 and Q.10
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed.
- 4) Use suitable data where ever required.
- Q 1) a) Explain removal of microorgaism by chlorination with chlorine gas with [4] reaction, factors affecting efficiency, 2 advantages and 2 disadvantages
 - b) Give principles involved in zeolite treatment. An exhausted zeolite softener was regenerated by passing 150 litres of sodium chloride solution having strength 150 gm/lit of sodium chloride. How many litres of hard water sample having hardness 400 ppm can be soften using this softener.
- Q 2) a) Explain any 4 applications of NMR spectroscopy.

[4]

OR

- b) Calculate λ_{max} for the following compounds (Explain calculations)
- [4]

Q3) a) Give principle of fractional distillation of petroleum. Give figure for [6 distillation process of crude oil. Give any three fractions obtained by the process with boiling range and composition in terms of carbon that are used as fuel.

OR

- b) Give construction, working with figure and formula for finding gross and net [6] calorific value of solid fuel by Bomb calorimeter.
- Q 4) a) Define glass transition temperature. Explain any five factors affecting on it.
 b) Give functions of any four ingredients of Portland cement.
 [4]

OR

- Q 5) a) Give structure, two properties and two applications of i) PHBV ii) Kevlar [6]
 b) Give four points of differences between thermosetting and thermosoftening polymer.
- Q 6) a) Explain potentiometric titration of Ce⁺⁴ions with Fe⁺² ions, giving cell [6] reactions, procedure, calculation of electrode potential before, after and at equivalence point and titration curve.
 - b) Explain the discharge reactions, 2applications and 2advantages of Ni-Cd cell. [4]

OR

- Q 7) a) Describe construction of a lead-acid battery with figure. Give cell representation and electrode reactions during a discharge process two applications.
 - b) Explain construction with figure, working reactions and 2 advantages of [4] polymer electrolyte membrane fuel cell.
- Q8) a) Explain wet corrosion with hydrogen evolution mechanism and oxygen [6] absorption mechanism
 - b) Explain any four factors affecting rate of corrosion on the basis of nature of [4] metal

OR

- Q 9) a) Describe anodic protection of metal with principle, figure, process, 2 advantages, 2 disadvantages and 2 applications. [6]
 - b) Discuss oxidation corrosion in case of Mg, Cr, Mo and Al with reactions and [4] type of oxide film formed

Q 10) Attempt following multiple choice questions:

- a) Faraday's laws are applicable for primary reactions. The laws are useful in
 i) Determination of equivalent weights
 ii) To relate the quantity of electricity required to denosite a given variety
 - ii) To calculate the quantity of electricity required to deposite a given weight of metal
 - iii) To calculate charge on an electron
 - iv) All of the above

b)	Operating temperatur	re of SOFC is	[1]
	i) 2000-2100°C		
	ii) 1500-1600°C		
	iii) 1000-1100°C		
	iv) 500- 600°C		
c)	In a glass electrode th	he glass bulb is filled with	[1]
	(i) 0.01 M HCI (ii) 0	0.1 M HCI	
	(iii) 1 M HCI (iv) N	None of these	
d)	Principle of	protection is, the metal to be protected is forced to	[1]
	behave as cathode.		
	(i) Cathodic	(ii) Anodic	
	(iii) Both (i) & (ii)	(iv) none of the above	
e)	Which of the following	ng can be protected using sacrificial anodic method?	[1]
	i) Food containers	(ii) Buried cables	
	(iii) Jewellery	(iv) None of these	
f)	In method	od, thermoplastic or thermosetting polymer are coated on	[1]
	the surface of metal.		
	(i) electroplating	(ii) cladding	
	(iii) powder coating	(iv) cementation	

Data for UV – Visible Spectroscopy: Woodward – Fieser rule for calculation of λ max in dienes, trienes and polyenes:

1	Basic λ_{max} for an unsubstituted, conjugated acylic (open chain) or heteroannular diene	214 nm
2	Basic λ _{max} for an unsubstituted, conjugated homoannular diene	253 nm
3	Increments for	+
1	Each double bond extending conjugation(DEC)	30 nm
	Each alkyl substituent or ring residue	5 nm
	Each exocyclic double bond	5 nm
4	Increments for substitutions	
	(a) H	0 nm
	(b) Alkyl group (R)	5 nm
	(c) Halogen Cl, Br	5 nm
	(d) -OH or -OR	5nm
	(e) Acyl group	0 nm
	(f) - S - Alkyl (-SR)	30 nm
	(g) N- Alkyl (-NR ₂)	60 nm

Woodward – Fieser rule for calculation of λ_{max} of enone derivatives α, β unsaturated compounds or ketones

Base value:	
a) Acyclic α, β unsaturated ketones	215 nm
b) 6 membered cyclic α, β unsaturated ketones	215 nm
c) 5 membered cyclic α, β unsaturated ketones	202 nm
d) α, β unsaturated aldehydes	210 nm
e) α, β unsaturated carboxylic acids & esters	195 nm
H substitution	0 nm
	a) Acyclic α, β unsaturated ketones b) 6 membered cyclic α, β unsaturated ketones c) 5 membered cyclic α, β unsaturated ketones d) α, β unsaturated aldehydes e) α, β unsaturated carboxylic acids & esters

3	Alkyl substituent or Ring residue in a position	10 nm
4	Alkyl substituent or Ring residue in β position	12 nm
5	Alkyl substituent or Ring residue in γ and higher positions	18 nm
6	Double bond extending conjugation	30 nm
7	Exocyclic double bonds	5 nm
8	Homodiene compound	39 nm
9	Polar groups	
	a) –OH in α position	35 nm
	-OH in β position	30 nm
	OH in δ position	50 nm
	b) -OAc in α, β, γ, δ positions	6 nm
	c) –OMe in a position	35 nm
	-OMe in β position	30 nm
	-OMe in γ position	17 nm
	–OMe in δ position	31 nm
	d) –Cl in α position	15 nm
	-Cl in β position	12 nm
1	e) -Br in α position	25 nm
1	–Br in β position	30 nm
1	f) –NR ₂ in β position	95 nm