Total No. of Questions - [09]

· Wist

Total No. of Printed Pages: 02

G.R. No.

P118-113 (ESE)

DECEMBER 2018 / END-SEM

F. Y. M. TECH. (STRUCTURE) (SEMESTER - I)

COURSE NAME: PLASTIC ANALYSIS OF STEEL

STRUCTURES

COURSE CODE: CVPB11183A

(PATTERN 2018)

Time: [3 Hour]

[Max. Marks: 50]

- (*) Instructions to candidates:
- 1) Answer Q.1, Q.2, Q.3, Q.4 OR Q.5, Q.6 OR Q.7, Q.8 OR Q.9
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed
- 4) Use of Steel table and IS 800:2007 is allowed
- 5) Assume suitable data where ever required
- Q.1) a) Define shape factor and calculate the same for ISST 250 section [03] about major. Take by=180 mm, ty=14.1 mm, tw=9.2 mm, I_{zz} = 2774.4 cm⁴

OR

- b) A single story single bay frame ABCD has a span of 4 m. Height of column AB is 3 m and column CD is 5 m. A horizontal force of 70 kN is applied at joint B whereas beam BC is subjected to udl of 20 kN/m. Plastic moment for beam is twice that of the columns. Calculate the maximum plastic moment considering Sway Mechanism only.
- Q.2) a) Calculate maximum plastic moment for single bay two story frame [03] subjected to loading as shown in Fig. (A). Consider Beam Mechanism only.

	b)	Calculate maximum plastic moment for single bay two story frame subjected to loading as shown in Fig. (A). Consider Sway Mechanism only.	[03]
Q.3)		a X b subjected to axial load with eccentricity - 'e', if (1) e < a/6, &	[02]
		(2) a/2 < e < a/3	
	b)	Calculate the tension carrying capacity of 4.6 grade anchor bolt having 20 mm nominal diameter as per specifications of IS 800:2007.	[02]
		COURSE CODE: CURRENT OF	
Q.4)	a)	Draw configurations of any three types of eccentric bracings and briefly explain advantages and disadvantages of each.	[06]
	b)	Differentiate between Ordinary Concentrically Braced Frames (OCBF) and Special Concentrically Braced Frames (SCBF) OR	[08]
Q.5)	a)	Write a short note on,	[08]
C/	/	(1) 'K' type bracing, (2) 'X' type bracing, (3) 'V' type bracing, (4)	[OO]
		Diagonal bracing	
	b)	Explain importance and functions of bracing system in steel frames	[06]
		a Define shape factor and calculate &	
Q.6)	a)	Write a note on different methods of analysis.	[10]
	b)	What do you mean by sinking of supports? Explain its effect on portal frames.	[04]
Q.7)	08 1	Write short notes on, 1) First order inelastic analysis 2) Second order elastic analysis	[06]
	b)	Write short notes on,	[08]
		First order elastic analysis Second order inelastic analysis	ţj
Q.8)	a)	Write a note on - Factors affecting lateral stability	[80]
	b)	While erecting angle or channel section purlins over the rafter, it is desirable to erect their flange facing up slope – Justify the statement.	[06]
Q.9)	a)	Calculate moment carrying capacity of laterally uncommented because	[14]
4.3)	aj	Calculate moment carrying capacity of laterally unsupported beam for ISMB 550 member of length 3 m. Take $b_f = 190$ mm , $t_f = 19.3$ mm , $t_w = 11.2$ mm , $t_w = 64893.6$ cm ⁴ $t_{re} = 1833.8$ cm ⁴	[14]