G.R. No.

DECEMBER 2018 / END-SEM

F. Y. M. TECH. (Civil-WREE) (SEMESTER - I)

COURSE NAME: Advanced Fluid Mechanics

COURSE CODE: CVPA11181

\$118-121 (ESE)

(PATTERN 2018)

Time: [3 Hour]

[Max. Marks: 50]

- (*) Instructions to candidates:
- Answer Q.1, Q.2, Q.3, Q.4 OR Q.5, Q.6 OR Q.7, Q.8 OR Q.9
- 2) Figures to the right indicate full marks.
- Use of scientific calculator is allowed
- Use suitable data where ever required
- Q.1) a) Check whether the stream function ψ = 5xy is irrotational and if so determine the corresponding potential function Φ) [3 marks]
 - b) Define source flow. Derive equations of streamlines and potential function for the
- Q.2) a) Oil having viscosity of 0.08 kg/ms flows through 100 mm diameter pipe. The

laminar flow velocity distribution is given by of pipe and r is radial coordinate. Determine shear stress at the wall. [3 marks]

b) For the data of Q.2 a calculate the pressure drop for 1 m length of pipe [3 marks]

Q.3) a) Discuss development of boundary layer over a flat plate

[2 marks]

b) Explain the process of boundary layer separation

[2 marks]

 $\frac{v_{\text{max}} - v}{V_{\bullet}} = 5.75 \log_{10} \left(\frac{R}{y}\right) \text{ for turbulent flow in pipes}$ Q.4) a) Derive b) Discuss the types of turbulent flow

[6 marks] [4 marks]

c) Discuss Reynolds' rules of averages

[4 marks]

Q.5) a) Derive Reynolds equation of motion

[10 marks]

b) Discuss Hydrodynamically smooth and rough pipes

[4 marks]

Q. 6) a) Derive equation for loss of energy due to sudden expansion in flow through pipes

OR

[4marks]

b) When a sudden contraction from 60 cm to 30 cm diameter is introduced in a horizontal pipeline, the pressure drops from 100kPa at the upstream of the contraction to 80 kPa on the downstream. Assuming a coefficient of contraction of 0.65 (i) estimate the flow rate in the pipe (ii) the loss of head due to contraction [10 marks]

OR

Q.7) a) Explain procedure to solve pipe network problem

b) Derive Dupit's equation for equivalent pipe

c) Explain pipes in series and pipes in parallel

[4 marks]

Q.8) a) A high tension cable 5 cm in diameter is strung out between two towers. At a wind velocity of 80 kmph calculate the (i) drag per unit length of cable (ii) frequency of vortex shedding (ρ_{air} = 1.2 kg/m³, v= 1.5 x 10-5 m²/s, 10⁴<Re<5x10⁵ C_D = 1.2, Re>5x10⁵ C_D = 0.35) [8 marks]

b) Discuss development of lift over an airfoil

[6 marks]

OR

Q.9) a) Discuss drag on cylinder and sphere when submerged in fluid

[8 marks]

b) Explain the polar diagram

[6 marks]