Total No. of Printed Pages: 03

| G.R. No.      |               |
|---------------|---------------|
| A September 1 | ordina a view |

## DECEMBER 2018 / END-SEM

## F. Y. M. TECH. (Mechanical Design Engineering) (SEMESTER - I)

COURSE NAME: ADVANCED STRESS ANALYSIS

**COURSE CODE: MEPA11181** 

(PATTERN 2018)

P118-151(ESE)

Time: [3 Hour]

[Max. Marks: 50]

- (\*) Instructions to candidates:
- 1) Answer Q.1, Q.2, Q.3, Q.4 OR Q.5, Q.6 OR Q.7, Q.8 OR Q.9
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed
- 4) Use suitable data where ever required

| Q. 1 a | The strain distribution in a thin plate has the form $\begin{bmatrix} ax^3 & axy^2 \\ axy^2 & ayx^2 \end{bmatrix}$ where 'a' is constant. Show that whether this strain field is a valid solution of an elasticity problem. Body forces are neglected. | 03 |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|        | OR                                                                                                                                                                                                                                                     |    |
| Q. 1 b | Prove that the stress function, $\emptyset = \frac{Pr\theta}{\pi} \sin \theta$ is a valid stress                                                                                                                                                       | 03 |
|        | function. Where P is load per unit length.                                                                                                                                                                                                             |    |
| Q. 2 a | A fatigue testing machine tool is used to determine fatigue life under rolling contact consist of a steel toroid (body 2) and steel cylinder (body 1), with longitudinal axis parallel to each other. Determine B/A ratio.                             | 03 |
|        | Where, $R_1 = 32mm$ , $R_1' = \infty$ , $R_2 = 32mm$ , $R_2' = 20mm$ ,                                                                                                                                                                                 |    |
| 4.0.1  | For steel E = 200 GPa, $v = 0.29$                                                                                                                                                                                                                      |    |
|        | OR                                                                                                                                                                                                                                                     |    |
| Q. 2 b |                                                                                                                                                                                                                                                        |    |

| Q. 3 a  | Write short note on rectangular strain gauge rosette.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|         | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| Q. 3 b  | Draw neat diagram of circular polariscope.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 02  |
| Q. 4    | The aluminum (G = 27.1 GPa) hollow thin-wall torsion member in Fig 01 has the dimensions shown. Its length is 3.00 m. If the member is subjected to a torque T = 11.0 kNm, Determine the maximum shear stress and angle of twist.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|         | 5 mm  5 mm  5 mm  Fig 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| HUG LES | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| Q. 5    | A torque $T = 3.0$ kN m is applied to the torsion member whose cross section is shown in Fig 02. Determine the maximum shear stress in the member and the angle of twist per unit length.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14  |
|         | 5 mm 5 mm 5 mm 5 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|         | Fig 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| Q. 6    | An extruded bar of aluminum alloy has the cross section shown in Fig 03. Locate the shear center for the cross section.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14  |
|         | and the first of the first and the control of the control o | 107 |
|         | Fig 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |

