Total No. of Questions - [8]

Total No. of Printed Pages-3

G.R. No.

U218-136 (ESE)

DECEMBER 2018/ENDSEM

S. Y. B. TECH. (E & TC) (SEMESTER - I)

COURSE NAME: NETWORK THEORY

COURSE CODE: ETUA21176

(PATTERN 2017)

Time: [2 Hours]

[Max. Marks: 50]

- (*) Instructions to candidates:
- 1) Answer Q.1, Q.2, Q.3, Q.4, Q.5 OR Q.6, Q.7 OR Q.8
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed
- 4) Use suitable data wherever required
- Q1 a) For the circuit of Fig 1. below, determine all four nodal voltages.

[6]

ΩD

- Q1 b) Determine the voltage Vx in the circuit of Fig 2, and the power supplied by the 1 [6] A source.
- Q2 a) Find the current through branch ab of the network in figure 3 using thevenin's [6] theorem. Let V=10 V

Q2 b) Determine the impedance to be connected at ab for maximum power transfer. [6]
Also determine power delivered to the load impedance at ab. Refer figure 4

Q3 a) An inductor coil having resistance 20 ohm and an inductance 0.02 H is connected in series with a capacitor of 0.02 micro farad. Determine Quality factor of the coil, Resonant Frequency and two half power frequencies.

OR

Q3 b) Refer following Fig 5. Determine resonant frequency , Impedance of the [6] antiresonant circuit Zar and resistance Rg for maximum power transfer. What is the relation between BW of the circuit at Max.Power transfer and BW with Rg=0? (L=1.284 mH, R=2.23Kohms, C=10pF)

Q4 a) The network shown in fig. 6 has acquired the steady state with switch closed for t [4] <0. The switch is opened at t=0. Obtain the equation for i(t)

FIG. 6 OR

Q4 b) In network the switch is moved from a to b at t=0 find v(t). Refer fig 7

Q5 a) Determine Z parameters for the following network (Fig 8)

[6]

[4]

b) Plot pole zero plot for driving point impedance for the network shown in fig 9

c) Determine Y(s) i.e. driving point admittance for the network shown in fig 10. [4]

OR

Q6 a) Determine V_2/V_1 and V_1/I_1 for network given below [6]

b) Derive the expressions for Z parameters in terms of Y parameters [4]

Determine transmission parameters for T network consisting of each series arm [4]
 100 ohm and shunt arm 200 ohm

Q7 a) In constant K LPF, Each series arm consists of inductor of 60mH and shunt arm consists of capacitor of 0.2 micro farad. Determine design impedance, cut off frequency, Characteristics impedance Z_{oT}at 1 KHz and ratio of phase constant at 1KHz and phase constant at 5KHz

b) Draw the characteristics curves for attenuation constant, phase constant and [4] characteristics impedance Z_{0T} for LPF and BPF

c) Derive the expression for Characteristics impedance of Symmetrical T network [4]

OR

Q8 a) Design a constant K Band pass filter with cutoff frequencies 4KHz and 10 KHz [6] with design impedance, 500 ohms.

b) For prototype T network with each series arm $Z_1/2$ and shunt arm Z_2 Prove that [4] $Z_0 = \sqrt{Z_{OC}Z_{SC}}$

c) Design T attenuator for 20dB attenuation and design impedance 600 ohms [4]

[4]