DECEMBER 2018/ENDSEM U 218-123(E> E)

S. Y. B. TECH. (PROGRAM) (SEMESTER - I)

COURSE NAME: COMPUTER ORGANIZATION AND MICROPROCESSORS TECHNIQUES

COURSE CODE: CSUA21173
(PATTERN 2017)

Marking Scheme

Q.1) a) Booth’s Algorithm Flowchart for Two’s Complement.
OR
b)A=1111Q=0010 4 steps 1.5 Marks for each step

Q.2) a) i) Functions of I/O Modules.
4y, ii) Diagram
iii) Description :
OR
b) i) Diagram
ii) Description .

Q.3)a) i) Diagram and Description of Data Flow Fetch cycle
ii) Diagram and Description of Data Flow Indirect cycle
OR
Q.3) b) i) Control Registers:
e Program Counter
¢ Instruction Register
e Memory Address Register
e Memory Buffer Register
ii) Status Registers
e Sign
e Zero
e Carry
e Equal
e Overflow
e Interrupt Enable/Disable
e Supervisor

page

[6 marks]

[6 marks]

[2 marks]
[2 marks]
[2 marks]

[3 marks]
[3 marks]

[3 marks]
[3 marks]

[3 marks]

[3 marks]

Q.4) a) Diagram
Explanation
OR

Q.4) b) Match the pairs
1- D, 2-A, 3-B, 4-C

Q.5) a) Explanation
~ Diagram

b) Explanation

c) Explanation

OR
Q.6) a)) Explanation
Diagram of Segmentation
b) List
- Explanation
c) Explanation 2 Marks each

Q.7) a) Explanation 2 Marks each instruction
b) 3 steps and Description
c)Data section
text section
OR

Q.8) a) Explanation 3 Marks each Solution
b) 1 mark for 1 Difference

c) c)Data section
text section

2)

page .18

[1 Marks]
[3 Marks]

[4 marks]

[3 Marks]
[3 Marks]
[4 Marks]|
[4 Marks]

[3 Marks]
[3 Marks]

[1 Marks]
[3 Marks]
[4 Marks]

[6 Marks]
[4 Marks]
[1 Mark]
[3 Mark]

[6 Marks]
[4 Marks]
[1 Mark]
[3 Mark

/

DECEMBER 2018 /ENDSEM

S. Y. B. TECH. (PROGRAM) (SEMESTER - I)

CCURSE NAME: CO.PUTER ORGANIZATION AND MICROPRGCESSCORS TECHNIQUES
COURSE CODE: CSUAZ1173

{(PATTERN 4.017)
ﬁﬁ Srmeladessens. SO\ UIOD
Q.1) a) Praw flov zhe i of Booth's Alyurithm for ‘Uwo’s Conplement
Multiplicatiou. [6 marks]
Sclution:)

™

Arithmedic shili
ight: A, £, 1)

algorithm:
Dividend {A:Q) = 1111 : 132 (-7}
Divizor (M= 1104 {8 _ [6 marks]

Solution:

'™ N - 1101
1003 initial vaiue

- g o Jow OOL0O shiads
CO1LO ::,..li:ot ract
g o0 Bl 9 CO1LO restiore
2310 01 C0 shift

subteract
cstore

o001

21310 0100

L300 . 1.0QQ .. shifi .
i B el subtract

113% L0031 set ., =1
SIS TR b
subiract
restore

ar

"\-}

O
o
]

% W W s 3
COL0O
- P

0
0
fod
O

ovs I

Q 2) a) Why I/O module is required? Explain block diagram of I/O Modu!e.f
[6 marks],

Solution: A ! ' X 3

i) Functions of I/O Moduile B £ g

« Interface to the’ processor and rnen.ory via the system’ bus or central swuch

¢ Interface to one or more peripheral devices by tailored data links

¢ Erptesdice, ta
externul dvvice

Laiertace (o
sy Steny bas

- e

4 teds R

: 4
= [dain
External
Parn :’ x device & -
Nnes - r interfice Status
Togic
. - _'*!- Status/eonirol registers. ', s = 4 — Contrgl
' rg o i T ——————— - . . Sy
-
H -
i E
Address o
liaes ! " = PData
» ‘ Externei ¥
- A Law e vies kT
. . forgic Riptardaoa Swatey
Cantyal s l 0y i nl Tepumis
Biipgn, e e e n e o ::—p‘ -] N - - g el
- BRI o H._?_,; : ‘

TR e e e et e e i e s 55 g 1 2. &t

Figure. &) Bloek Hiagrnn‘ of an [/¢ Mogh
¢ The 1/0 moonle conascts to the rost of the computer t"ntugn a zet-of signal lines

-fe.g., systera bus lines).

eData transferred to and from the module are haufieped Liv-ane or. mere data

registers. ' : th

s There may also be one or more status registers that provide -surrént siatus
information. :

=A status reglater may also funciior asa e.ontrol reg,:qtcr io a@.capt det&ied conirol
informatien froin the processor. = : . e

*The logic within the mocluk. inwracts with the processorv‘a a ‘H“(:f of c,cfltrol iines.

«The precesser usds the cotitiol uu}‘ W ééf' & co'mfh:;:'hi‘i‘sffb {4 /0 racd ulc .

L g =S T . . Gl S Bosk, Tt T NeeTin T

o [o

«Somé of the control lines may be used by the I/0 module (e.g., for arbitration

and status signals).

¢ The module must also be able to recognize and generate addresses associated

with the devices it controls.

eEach I/O module has a unique address or, if it controls more than one

external
device, a unique set of addresses.

eFinally, the I/O module contains logic specific to the interface with each

device
that it controls.
OR

Q.2 b) Draw and Explain typical cache organization.

Solution :

Address [~
Adddress
bauatffoer
Control il = Control
Processor Cuche
Erantan
J buffer
, =
Data =1

Figure 2h) Typicai Cache Organization

[6 marks]

Ststem bus

¢ The cache connects to the processor via data, control, and address lines.

e The data and address lines also attach to data and address buffers,
which attach to a system bus from which main memory is reached.

e When a cache hit occurs, the data and address buffers are disabled and
communication is only between processor and cache, with no system bus

traffic.

-~

e When a cache miss occurs, the desired address is loaded onto the system
bus and the data are returned through the data buffer to both the cache

and the processor.

e In cther organizatiens, the cache is physically interpesed “Leiween the
processor and the main memory for all data, address, and control lines.

Q.3) a) Draw and explain Data Flow Fetch Cycle and Data Flow Indirect Cycle.

opo

oo -

e— Ademory

™ 1
Contral | -]

vt |

I NI]-\"J, =y

Address Data Control
bus Dus bus

MBR = Memory bulfer registar
MAR = Memory address register
IR = Instruction register

PC = Progrmun counter

[6 marks]

Figure 3a)i) Data Flow Fetch Cycle

Pu

@'Er‘—_]—‘—‘;]
—— I Memory
Control | i T e
unit T

A MBR [T vt e mcas

A
]

Address Data Control
bHus s bus

Figure 3a)ii) Data Flow Indirect Cycle

During the fetch cycle, an instruction is read from memory.

The PC contains the address of the next instruction to be fetched.

This address is moved to the MAR and placed on the address bus.

The control unit requests a memory read, and the result is placed on the

data bus and copied into the MBR and then moved to the IR.

e Meanwhile, the PC is incremented by 1, preparatory for the next fetch.
Once the fetch cycle is over, the control unit examines the contents of the
IR to determine if it contains an operand specifier using indirect
addressing.

o If so, an indirect cycle is performed.

e The rightmost N bits of the MBR, which contain the address reference,
are transferred to the MAR.

* Then the control unit requests a memory read, to get the desired address

nf the operand into the MBR.

OR

Q.3 b) What is control and status register? List and explain its types in detail.
[6 marks]

A) Control and status registers: Used by the control unit to control the
operation of the processor and by privileged, operating system programs to
control the execution of programes.
Four registers are essential to instruction execution: :
1) Program counter (PC):
e Contains the address of an instruction to be fetched.
 The processor updates the PC after each instruction fetch so that the PC
always points to the next instruction to be executed.
e A branch or skip instruction will aiso modify the contents of the PC.
2) Instruction register (IR):
¢ Contains the instruction most recently fetched.
e The fetched instruction is loaded into an IR, where the opcode and
operand specifiers are analyzed.
3) Memory address register (MAR): Contains the address of a location in
memory
4) Memory buffer register (MBR):
e Contains a word of data to be written to memory or the word most
recently read

e Data are exchanged with memory using the MAR and MBR. In a bus-
organized system, the MAR connects directly to the address bus, and the
MBR connects directly to the data bus.
B) Status Registers :
Many processor designs include a register or set of registers, often known as
the program status word (PSW), that contain status information.
The PSW typically contains condition codes plus other status information.
Common fields or flags include
the following:
+ Sign: Contains the sign bit of the result of the last arithmetic operation.
* Zero: Set when the result is O.
* Carry: Set if an operation resulted in a carry (addition) into or borrow
(subtraction)
out of a high-order bit. Used for multiword arithmetic operations.
* Equal: Set if a logical compare result is equality.
» Overflow: Used to indicate arithmetic overflow.
* Interrupt Enable/Disable: Used to enable or disable interrupts.
* Supervisor: Indicates whether the processor is executing in supervisor or
user mode. Certain privileged instructions can be executed only in supervisor
mode, and certain areas of memory can be accessed only in supervisor mode.

Q. 4) a) Draw with neat Diagram and Explain 80386 Flag register. [4marks]

Solution:
| FLAGS

| | ST S

3 1413 12 1 X o = o d z 3 a 2 X o
RESERVED ’ ’ !
FOR YT OrEL vn BRE| @ |[INT [T oF | D nrr; =F Fr a o PF | 1

1
|
'i 3 FLAGREGISTER OF 80386

">
in

g

Figure 4) a) Flag Register of 80386

*Flag Register of 80386: The Flag register of 80386 is a 32 bit register. Out of
the 32 bits, Intel has reserved bits D18 to D31, D5 and D3, while D1 is
always set at 1.Two extra new flags are added to the 80286 flag to derive
the flag register of 80386. They are VM and RF flags

* VM - Virtual Mode Flag:

Q If this flag is set, the 80386 enters the virtual 8086 mode within
the protection mode.

O This is to be set only when the 80386 is in protected mode.

O In this mode, if any privileged instruction is executed an exception
13 is generated.

O This bit can be set using IRET instruction or any task switch
operation only in the protected mode.

*RF- Resume Flag:

Q This flag is used with the debug register breakpoints.

Q It is checked at the starting of every instruction cycle and if it is set, any
debug fault is ignored during the instruction cycle.

O The RF is automatically reset after successful execution of every
instruction, except for IRET and POPF instructions.

* NT (Nested flag):

N

»

— This flag is set when one system task invokes another task. (i.e.
nested task).
» IOPL (I/O Privilege level):
— It holds pnvﬂege level, from O to 3, at which the current code is
running in order to execute any I/O related instructions.

OR
Q.4)b) Match the pairs: [4 marks]
Solution:
1. Immediate Addressing D. MOV AX,2387H

2. Based Indexed with Displacement Mode |A. MOV AX, [BX+DI+08]
3. Register Indirect Addressing Mode B. MOV CX, [BX]

4. Direct Addressing Mode C. ADD AX,[1592H]
Q. 5) a) Draw neat diagram to convert linear address to physical address
using paging. [6 marks]
Solution:
: 31 21 1" 0
adej?::sr Directory Page Offset
Byte
- PDE &
1
1 PTE of
of 4096
1024 1
31 0 of |
1024
i |
CR3 Page directory Page table Page frame
Figure 5)a) Paging
Q.5) b) Explain protection in 80386 in detail. [4 marks]
Solution:

+ 80386 DX has four levels of protection which isolate and protect user
programs from each other and the operating system.

« It offers an additional type of protection on a page basis, when paging is
enabled(using U/S and R/W fields)

* The four-level hierarchical privilege system is 111ustrated as follows:

HIGH SPEED
OPERATING
SBYSTEM
INTERFACE

APPLICATIONS

cPu
ENFORCED
SOFTWARE
INTERFACES

OS EXTENSIONS

SYSTEM
SERVICES

Figure 5)b) Privilege Levels

. The privilege levels (PL) are numbered'0 through 3. Level O is the most
privileged or trusted level

Q.5) ¢) Explain GDT and GDTR. [4 marks]

Solution:

1) Global Descriptor Table (GDT):

L]

Main general purpose table of descriptors.

Maintains a list of most segments i

GDT can be used by all programs to reference segments of memory.
Every protected mode 80386 system contains a Global Descriptor
Table.

The GDT holds descriptors that are available to all the tasks in a
system.

Generally, the GDT contains 3 types of descriptors: code and data
segments used by the operating system, descriptors for the Local
Descriptors in a system, and task state segments (TSS).

The first slot of the GDT is not used; it corresponds to the null selector which
defines a null pointer value.

2)Global Descriptor Table Register (GDTR):

It points to the base of GDT.

OR

Q.6) a) Draw neat diagram to convert logical address to linear address
using Segmentation. [6 marks]

Solution:

-

L

15 8 31 9

LOGICAL
ADDRESS SELECTOR H OFFSET
e A | ¥
DESCRIPTOR TABLE

SEGMENT BASE

—p || DESCRIPTOR | + || ¢&—
ADDRESS l

LINEAR

ADDRESS DIR PAGE OFFSET
Figure 6)a) Segmentation
Q.6) b) List various types of privileged levels and Explain DPL.]
marks]
Solution:

* There are 3 different types of privilege level entering into the privilege level
checks:
— Current Privilege Level (CPL)
— Descriptor Privilege Level (DPL)
— Requestor Privilege Level (RPL)
Descriptor Privilege Level (DPL):
« It is the PL of the object which is being attempted to be accessed by the
current task
» Itis PL of target segment and is contained in the descriptor of the segment

Q.6) c) Explain LDT and IDT. [4 marks]
Solution:
Local Descriptor Table (LDT):
* Defined on a task basis in a multitasking system.
*+ Each task has its own LDT, but tasks can also share a few different LDTs.

Interrupt Descriptor Table(IDT):

« It defines interrupt or exception handling routine.
+ Itis a direct replacement for the interrupt vector table used in 8086 systems.
* Exactly one GDT and one IDT must be defined for the 80386 to operate in

protected mode.

Q.7) a) Explain Any 3 String Instructions with example. [6 marks]
Solution:

There are five basic instructions for processing strings. They are —

« MOVS — This instruction moves | Byte, Word or Double word of data from memory
location to another. -

« LODS - This instruction loads from memory. If the operand is of one byte, it is loaded
into the AL register, if the operand is one word, it is loaded into the AX register and a
double word is loaded into the EAX register.

» STOS - This instruction stores data from register (AL, AX, or EAX) to memory.

« CMPS - This instruction compares two data items in memory. Data could be of a byte
size, word or double word.

» SCAS — This instruction compares the contents of a register (AL, AX or EAX) with the -
contents of an item in memory.

Each of the above instruction has a byte, word, and double word version, and string instructions
can be repeated by using a repetition prefix.

These instructions use the ES:DI and DS:SI pair of registers, where DI and SI registers contain
valid offset addresses that refers to bytes stored in memory. SI is normally associated with DS
(data segment) and DI is always associated with ES (extra segment).

' <
The DS:SI (or ESI) and ES:DI (or EDI) registers point to the source and destination operands,
respectively. The source operand is assumed to be at DS:SI (or ESI) and the destination operand
at ES:DI (or EDI) in memory.
For 16-bit addresses, the SI and DI registers are used, and for 32-bit addresses, the ESI and EDI
registers are used.
The following table provides various versions of string instructions and the assumed space of the
operands.
Double
Basic Instruction Operands at Byte Operation Word Operation word
Operation
MOVS ES:DI, DS:SI MOVSB MOVSW MOVSD
LODS AX, DS:SI LODSB LODSW LODSD
STOS ES:DI, AX STOSB STOSW STOSD)
CMPS DS:SI, ES: DI CMPSB CMPSW CMPSD
SCAS ES:DI, AX SCASB SCASW SCASD

Q.7)b) Write the steps for executing an 64 bit assembly program on NASM. [4 marks]

Solution:
There are 3 steps

1) Assembling the code to remove syntax errors
nasm -f elf64 prog.asm

2) Linking step to link all modules
Id -o prog prog.o

3) Execution step to run the code
./prog

Q.7) c) Write an assembly code for 64 bit architecture to display “WELCOME"
on Screen for 5 times. [4 marks]

Solution:
Section .data
msg db 10,13, “ WELCOME ” ;message declaration

msglen equ $-msg ; length of message
Section .text

global _start

_start:

Mov rcx,5 ; loop counter initialized to 5

L1: Mov rax,1 ; function number for write device
Mov rdi, 1 ; Standard output descriptor number

Mov rsi,msg ; Address of message
Mov rdx, msglen ; length of message

Syscall

Dec rcx ; decrementing the counter byl

Jnz L1 ; checking for termination condition
Mov rax,60 ; function number to exit ¢
Mov rdi,0 ; Standard input descriptor number
Syscall

OR other solution is without using loop

OR

Q.8) a) Assuming the following values in the register BX= 38 and CX= 5AH,
show the contents of the register after following Operation ROL BX,4 and

SHL CX,4. Justify your answer. [6 marks]
Solution:
BX= 38H 0011 1000 Initial value
0111 0000 ROL by 1 bit
1110 0000 ROL by next 1 bit
1100 0001 ROL by next 1 bit
BX=83H 1000 0011 ROL by next 1 bit(final
value)
CX= 5AH 0101 1010 Initial value
1011 0100 SHL by 1 bit
0110 1000 SHL by next 1
1101 0000 SHL by next 1
CX=A0H 1010 0000 SHL by next 1 bit(final
value)

Q.8) b) Differentiate between macro and procedure.

[4marks]

Solution:
Procedure Macro
Procedures are used for large group of instructionsto | Procedures are used for small group of instructions to
be repeated. be repeated.

Objact code is generated only once in memory.

Object code is generated everytime the macro is
called.

CALL & RET instructions are used to call procedure and
return from procedure.

Macro can be called just by writing its name,

Length of the object file is less

Object file becomes lengthy.

Directives PROC & ENDP are used for defining
procedure,

Directives MACRO and ENDM are used for defining
MACRO

More time is required for it’s execution

Less time is required for it's execution

Procedure can be defined as
Procedure_name PROC

Macro can be defined as

MACRO-name MACRO [ARGUMENT ,....... ARGUMENT NJ

Procedure_name ENDP ENDM

For Example For Example
Addition PROC near Display MACRO msg
Addition ENDP ENDM

Q.8)c) Write an 64 bit assembly program to add two numbers assuming the
numbers are in rax and rbx register (include comments in the code).[4marks]

Solution:

%macro scall 4
MOV rax,%1
MOV rdi, %2
MOV rsi,%3
MOV rdx,%4
syscall
%endmacro

section .data
msg2 db 10,13, "the sum is:" ;message declaration
msg2len equ $-msg2 ; length of message

section .bss
res resb 16

section .text
global _start
_start :

mov rax,[numl] ;Assuming rax and rbx has two nos. num1l and num?2
mov rbx,[num?2]

add rbx,rax ; adding the nos n result in rbx

scall 1,1,msg2,msg2len ; Display message

call display ; calling display procedure

>

mov rax,60 ; exit
mov rdi,0
syscall
display :
mov rdi,res ; pointing to res
MOV rcx,16 ; counter for looping
UP1 : ROL rbx,4 ; extracting a digit
MOV al,bl
AND al,0FH
CMP al,09H ; convert to ASCII HEX from HEX
JBE L2
ADD al, 07H
L2: ADD al,30H
mov [rdi],al ; storing in res variable
INC rdi
DEC rcx
JNZ UP1
scall 1,1,res,16 ; calling the macro and displaying result
ret ; return to procedure

