G.R.	Court sheets \$10	U218-151 (ESE)	o lo
	DECEN	IBER 2018/EN	DSEM	
S. Y. B	. TECH. (MECHAI	NICAL ENGINE	ERING) (SEME	STER - I)
COURSE NA	AME: Engineering	Mathematics	III	
COURSE C	DDE: MEUA211	71 representation		
	(1	PATTERN 2017	7)	
Time: [2 Ho	urs]		[Max. Marks	: 50]
Q.1) a) $(D^2 +$	$9)y = x^3 + 2x - \cos 3x$	OR		[6 marks]
b) $x^3 \frac{d^2y}{dx^2}$	$\frac{d^2y}{dx^2} + 3x^2 \frac{d^2y}{dx^2} + xy = \sin(\log x)$	(x)	and a start	[6 marks]
m 2	Fourier integral repre			
$\int_{0}^{\frac{1}{\lambda^4}} \frac{\lambda^4}{\lambda^4} + 4$	$\frac{x}{d\lambda} = \frac{\pi}{2} e^{-x} \cos x$, where	e x > 0 [6 marks	11.75	
		OR		
b) Find	inverse Laplace tr	ansform of $\frac{s}{s^4 + s^4}$		[6 marks]
	first four moments culate the first fo			111111111111111111111111111111111111111
	skewness and kurt		g g garangah di Masa pada da K	[6 marks]
63. Find the	mal distribution 79 mean and standard or z=1.475 area A=0	6 of the items ar deviation.	la = 7e x 1	89% are under

Find scalar ϕ such that $\overline{F} = \nabla \phi$ [4 marks] OR b) $\nabla^2 (\phi \varphi) = \phi \nabla^2 \varphi + 2 \nabla \phi \cdot \nabla \varphi + \varphi \nabla^2 \phi$ [4 marks] Q. 5 a) Find the work done in moving a particle from (1,1,1) to (3,-5,7) in a force field $\bar{F} = (x^2 - yz)\hat{\iota} + (y^2 - zx)\hat{\jmath} + (z^2 - xy)\hat{k}$ [6 marks] b) Using Stoke's Theorem evaluate following line integrals $\int_C (4y \, dx + 2z \, dy + 2z \, dy) \, dx$ 6y dz) where C is curve of intersection of $x^2 + y^2 + z^2 = 2z$ and x = z - 1. [4 marks] c) Show that $\iiint_{V} \frac{dV}{r^2} = \iint_{C} \left(\frac{\hat{r}}{r^2}\right) \cdot \hat{n} \ dS$ [4 marks] OR Q.6) a)) Verify Green's Theorem for $\overline{F} = x\hat{\imath} + y^2\hat{\jmath}$ over the first quadrant of the circle $x^2 + y^2 = a^2$. 6 marks b) Using Stoke's Theorem evaluate following line integrals: $\int_{\mathcal{C}} (y \, dx + z \, dy + x \, dz)$ where C is the curve of intersection of $x^2 + y^2 + z^2 = a^2$ and x + z = a. [4 marks] c) Evaluate $\iint (y^2 z^2 \bar{\imath} + z^2 x^2 \bar{\jmath} + x^2 y^2 \bar{k}) d\bar{S}$ where S is surface of the sphere $x^2 + y^2 + z^2 = a^2$ in the positive octant. [4 marks] Q.7) a) Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ if i) u is finite for all t, ii) u = 0 when x = 0, π for all t iii) $u = \pi x - x^2$ when t = 0 and $0 \le x < \pi$ A rectangular plate with insulated surface is 10cm wide and so long compared to its width that it may be considered infinite in length without introducing an appreciable error . If the temperature along short edge y=0 is given $u(x,0) = 100\sin\frac{\pi x}{10}$, $0 \le x \le 10$, while the two long edges x = 0 and x = 10 as well as the other short edge are kept at $0^{\circ}\,\text{C}\,$. State the conditions in mathematical form. [4 marks] In Q.3 b, Find steady-state temperature u(x,y). [4 marks] OR Q.8) a) A tightly stretched string with fixed end points x=0 and x=1 is initially in a position given by $y(x,0) = y_0 \sin^3 \frac{\pi x}{1}$. If it is released from rest from this position , find the page 2

Q.4) a) Show that $\overline{F} = (6xy + z^3)i + (3x^2 - z)j + (3xz^2 - y)k$ is irrotational.

displacement y at any distance x from one end and at any time t.

[6marks]

b) A tightly stretched string with fixed end points x=0 and x=l is initially in a position given by $y(x,0) = y_0 \sin^3 \frac{\pi x}{l}$. If it is released from rest from this position, state the condition in mathematical form. [4 marks]

c) Find the displacement y in the above problem Q. 8 b at any distance x from one end and at any time t. [4 marks]