Total No. of Questions - [8] Total No. of Printed Pages - [3]

G.R. No.

U218-155 (ESE)

DECEMBER 2018/ENDSEM

S. Y. B. TECH. (MECHANICAL ENGINEERING) (SEMESTER - I)

COURSE NAME

: THERMODYNAMICS

COURSE CODE : MEUA21175

(PATTERN 2017)

Time: [2 Hours]

[Max. Marks: 50]

- (*) Instructions to candidates:
- Answer Q.1, Q.2, Q.3, Q.4, Q.5 OR Q.6, Q.7 OR Q.8 1)

Figures to the right indicate full marks.

- Use of Steam Table, Mollier Diagram is allowed
- Use of scientific calculator is allowed
- Use suitable data where ever required
- Q.1 a) Derive an expression for work done and heat supplied for polytropic process for non-flow systems.

- b) A closed system of constant volume experiences a temperature rise of 25 °C when a certain process occurs. The heat transferred in the process is 30 kJ. The specific heat at constant volume for the pure substance comprising the system is 1.2 kJ/kg °C, and the system contains 2.5 kg of this substance. Determine:
 - (i) The change in internal energy
 - (ii) The work done.

Q.2 a) What is COP? How will you calculate COP of refrigerator and heat pump?

6

6

OR

b) What is the highest possible theoretical efficiency of a heat engine operating with a hot reservoir of furnace gases at 2100 °C when the cooling water available is at 15 °C?

Q.3	a)	Prove that entropy is the property of the system. To low the system.	6
		323) 221-810U OR	
	b)	Determine the entropy change of 4 kg of a perfect gas whose temperature varies from 127°C to 227 °C during a constant volume process. The specific heat varies linearly with absolute temperature and is represented by the relation:	
		$c_v = (0.48 + 0.0096 \text{ T}) \text{ kJ/kg K}.$	6
Q.4	a)	Explain working of separating and a throttling calorimeter	4
		VIOR MAUTT OR	
	b)	Write a short note on formation of steam	
Q.5	a)	A boiler house has natural draught chimney of 20 m height. Flue gases are at temperature of 380 °C and ambient temperature is 27 °C. Determine the draught in mm of water column for maximum discharge through chimney and also the air supplied per kg of fuel.	6
	b)	Compare water tube boiler and fire tube boiler.	4
	c)	Show in tabular form boiler heat balance sheet and the formulas involved for estimating each component.	4
		OR The restaura hasen to a lid	
Q.6	a)	The following particulars were recorded during a steam boiler trial	
		Pressure of steam = 11 bar	
		Mass of feed water = 4600 kg/h	
		Temperature of feed water = 75 °C	
		Dryness fraction of steam = 0.96 Coal used = 490kg/h	
		Coal used = 490kg/h Calorific value of coal = 35700 kJ/kg	
		Moisture in coal = 4% by mass	
		Mass of dry flue gases = 18.57 kg/kg of coal	
		Temperature of flue gases = 300 °C	
		Boiler house temperature = 16 °C Specific heat of flue gases = 0.97 kJ/kg K	
		on constants make to a stocking for a diversity and a diversity.	_
		Draw the heat balance sheet of the boiler per kg of coal.	6
	b)	Discuss briefly the term boiler efficiency and equivalent evaporation.	4
	c)	Explain importance of boiler draught in steam power plant.	4

Q.7 a) An air compressor takes in air at 1 bar and 20 °C and compresses it according to law $pV^{1,2}$ = constant. It is then delivered to a receiver at a constant pressure of 10 bar. R = 0.287 kJ/kg K. Determine Temperature at the end of compression (ii) Work done and heat transferred during compression per kg of air. b) Explain the following terms with respect to reciprocating compressor: Isothermal efficiency (i) (ii) Isentropic efficiency c) Draw p - V & T - s diagrams for reciprocating compressor with and without clearance. OR Calculate the diameter and stroke for a double acting single stage reciprocating air compressor of 50 kW having suction pressure 100 kN/m^2 and temperature 150 °C. The law of compression is $pV^{1.2}$ = C and delivery pressure is 500 kN/m². Stroke / Diameter = 1.5 and mean piston speed in 150 m/min. Clearance is neglected. b) Mention the different applications of compressed air. c) Sketch the theoretical indicator diagram for a single stage, single cylinder reciprocating air compressor with clearance volume showing various processes.

*********Best of Luck*******