H(S) 2 M

G.R. Vo. U218-133 (ESE)

DECEMBER 2018/ENDSEM S. Y. B. TECH. (E&TC) (SEMESTER - I) Marking Scheme

COURSE NAME: Signals & Systems COURSE CODE: ETUA21173

			(PATTERN 2017)	standors, m	
	Tim	e: [2	Hours	[Max. Marks: 50]	
	(*)	Inst	ructions to candidates:	[
	1) 2) 3) 4)	Ans Figu Use	wer Q.1, Q.2, Q.3, Q.4, Q.5 OR Q.6, Q.7 OR Q.8 ares to the right indicate full marks. of scientific calculator is allowed suitable data where ever required		
	Q. 1	a)	Justitcation for energy signal 2 M	[6]	
			Formula for Power 1M	[6]	
			Correct Ans of Power 3M		
			OR		
		b)	Equation of even and odd 1M	[6]	
		D)	Folded 1M	[6]	
			Even 2M and odd 2M		
	0 0	-1	G111 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	Q. 2	aj	Causal, stable 1 M each	[6]	
			Linear and TV/TIV 2 M each		
			OR		
		b)	Causal, stable 1 M each	[6]	
			Linear and TV/TIV 2 M each		
	Q. 3	a)	For h(t) 1 M	[6]	
-			Partial overlapping 2M		
			Full overlapping 2M		
			Final signal 1M		
			OR		
		b)	3 M each correct ans with appropriate steps	[6]	
				. [0]	
	Q. 4	a)	IFT formula 1 M	[4]	
		,	Correct ans 3 M	1.1	
			OR		
		b)	Property 1 M	[4]	
			Correct ans 3 M	1.1	
	Q. 5	0)	Differentiation property 135		
	Q. J	a)	Differentiation property 1M	[6]	

	b)	X(s) 1M Correct ans 2M Correct factors 1M Coffecient 1M Correct x(t) 2 M Correct expression of signal 2 M Laplace 2 M	[4]
		OR	
Q. 6	a)	Property 2 M	[6]
	b)	Correct solution by property only 4 M Property 1 M Correct solution by property only 3M	[4]
	c)	2 Marks each	[4]
Q. 7	a) b) c)	2 Marks each for any three properties Correct ans 4 M Correlogram 2 and example 2 OR	[6] [4] [4]
Q. 8	a) b)	1 mark each sample FT 1 M ESD 3 M	[6] [4]
	c)	1 Marks each property	[4]

SOLUTION **DECEMBER 2018/ENDSEM** S. Y. B. TECH. (E&TC) (SEMESTER - I)

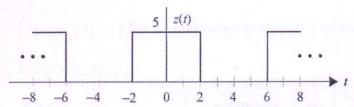
COURSE NAME: Signals & Systems

COURSE CODE: ETUA21173

(PATTERN 2017)

Q1 a) Classify the continuous time signal shown in figure below as energy or power signal.

6М



Solution:

(b) The signal z(t) is a periodic signal with fundamental period 8 and over one period is expressed as follows:

$$z(t) = \begin{cases} 5 & -2 \le t \le 2 \\ 0 & 2 < |t| \le 4, \end{cases}$$

with z(t + 8) = z(t). The instantaneous power, average power, and energy of the signal are calculated as follows:

instantaneous power

$$P_z(t) = \begin{cases} 25 & -2 \le t \le 2\\ 0 & 2 < |t| \le 4 \end{cases}$$

and
$$P_z(t + 8) = P_z(t)$$
;

average power
$$P_z = \frac{1}{8} \int_{-4}^{4} |z(t)|^2 dt = \frac{1}{8} \int_{-2}^{2} 25 dt = \frac{100}{8} = 12.5;$$

$$E_z = \int_{-\infty}^{\infty} |z(t)|^2 dt = \infty. \quad \boxed{1}$$

Because the signal has finite power $(0 < P_z = 12.5 < \infty)$, z(t) is a power signal.

Express the CT signal

$$x(t) = \begin{cases} t & 0 \le t < 1 \\ 0 & \text{elsewhere} \end{cases}$$

as a combination of an even signal and an odd signal. 6M

Solution:

In order to calculate $x_e(t)$ and $x_o(t)$, we need to calculate the function x(-t), which is expressed as follows:

$$x(-t) = \begin{cases} -t & 0 \le -t < 1 \\ 0 & \text{elsewhere} \end{cases} = \begin{cases} -t & -1 < t \le 0 \\ 0 & \text{elsewhere.} \end{cases}$$

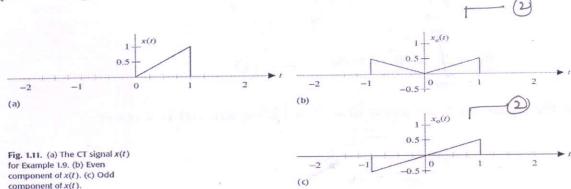
Using Eq. (1.20), the even component $x_e(t)$ of x(t) is given by

$$x_{\mathbf{e}}(t) = \frac{1}{2}[x(t) + x(-t)] = \begin{cases} \frac{1}{2}t & 0 \le t < 1\\ -\frac{1}{2}t & -1 \le t < 0\\ 0 & \text{elsewhere,} \end{cases}$$

while the odd component $x_0(t)$ is evaluated from Eq. (1.21) as follows:

$$x_{o}(t) = \frac{1}{2}[x(t) - x(-t)] = \begin{cases} \frac{1}{2}t & 0 \le t < 1\\ \frac{1}{2}t & -1 \le t < 0\\ 0 & \text{elsewhere.} \end{cases}$$

The waveforms for the CT signal x(t) and its even and odd components are plotted in Fig. 1.11.



Q.2 a) The system with excitation, x(t), and response, y(t), described by: $y(t) = x \left| \frac{t}{2} \right|$

Determine whether it is causal, Linear, Time Invariant, Stable?

Solution:

Homogeneity:

Let
$$x_1(t) = g(t)$$
. Then $y_1(t) = g\left(\frac{t}{2}\right)$.

Let
$$x_2(t) = K g(t)$$
. Then $y_2(t) = K g(\frac{t}{2}) = K y_1(t)$.

Homogeneous

Additivity:

Let
$$x_1(t) = g(t)$$
. Then $y_1(t) = g\left(\frac{t}{2}\right)$.

Let
$$x_2(t) = h(t)$$
. Then $y_2(t) = h\left(\frac{t}{2}\right)$.

Let
$$x_3(t) = g(t) + h(t)$$
. Then $y_3(t) = g\left(\frac{t}{2}\right) + h\left(\frac{t}{2}\right) = y_1(t) + y_2(t)$

Additive

Since it is both homogeneous and additive, it is also linear.

It is also incrementally linear, since any linear system is incrementally linear.

It is not statically non-linear because it is linear.

Time Invariance:

Let
$$x_1(t) = g(t)$$
. Then $y_1(t) = g\left(\frac{t}{2}\right)$.

Let
$$x_2(t) = g(t - t_0)$$
. Then $y_2(t) = g(\frac{t}{2} - t_0) \neq y_1(t - t_0) = g(\frac{t - t_0}{2})$.

Time Variant

Stability:

If x(t) is bounded then y(t) is bounded.

Stable

Causality:

At time, t = -2, y(-2) = x(-1). Therefore the response at time, t = -2, depends on the excitation at a later time, t = -1.

Not Causal

Q2b) The system with excitation, x(t), and response, y(t), described by:

$$y(t) = \cos(2\pi t) x(t)$$

Determine whether it is causal, Linear, Time Invariant, Stable?

Solution:

Homogeneity:

Let $x_1(t) = g(t)$. Then $y_1(t) = \cos(2\pi t)g(t)$.

Let $x_2(t) = K g(t)$. Then $y_2(t) = \cos(2\pi t)K g(t) = K y_1(t)$.

Homogeneous

Additivity:

Let $x_1(t) = g(t)$. Then $y_1(t) = \cos(2\pi t)g(t)$.

Let $x_2(t) = h(t)$. Then $y_2(t) = \cos(2\pi t)h(t)$.

Let $x_3(t) = g(t) + h(t)$. Then $y_3(t) = \cos(2\pi t)[g(t) + h(t)] = y_1(t) + y_2(t)$

Additive

Since it is both homogeneous and additive, it is also linear.

It is also incrementally linear, since any linear system is incrementally linear.

It is not statically non-linear because it is linear.

____(<u>2</u>)

Time Invariance:

Let $x_1(t) = g(t)$. Then $y_1(t) = \cos(2\pi t)g(t)$.

Let $x_2(t) = g(t - t_0)$. Then $y_2(t) = \cos(2\pi t)g(t - t_0) \neq y_1(t - t_0) = \cos(2\pi (t - t_0))g(t - t_0)$.

Time Variant

(2)

Stability:

If x(t) is bounded then y(t) is bounded because it is multiplied by a cosine which is bounded.

Stable

Causality: _____ 1

The response at any time, $t = t_0$, depends only on the excitation at that same time and not on the excitation at any later time.

Q3a) The input signal x(t)= e-t u(t) applied to the system whose impulse response is given by

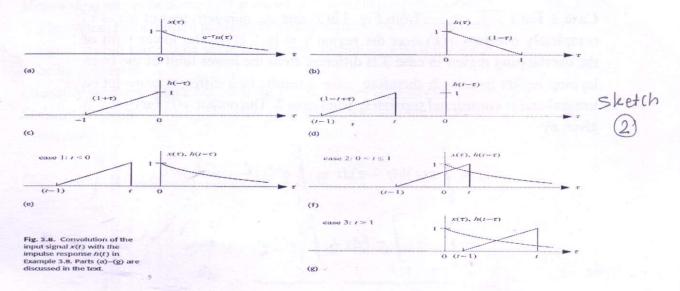
$$h(t) = \begin{cases} 1 - t & 0 \le t \le 1\\ 0 & \text{otherwise.} \end{cases}$$

Calculate the output of the system.

Solution:

Solution

In order to calculate the output of the system, we need to calculate the convolution integral for the two functions x(t) and h(t). Functions $x(\tau)$, $h(\tau)$, and $h(-\tau)$ are plotted as a function of the variable τ in the top three subplots of Fig. 3.8(a)–(c). The function $h(t-\tau)$ is obtained by shifting the time-reflected function $h(-\tau)$ by t. Depending on the value of t, three special cases may arise.



Case 1 For t < 0, we see from Fig. 3.8(e) that the non-zero parts of $h(t - \tau)$ and $x(\tau)$ do not overlap. In other words, output y(t) = 0 for t < 0.

Case 2 For $0 \le t \le 1$, we see from Fig. 3.8(f) that the non-zero parts of $h(t - \tau)$ and $x(\tau)$ do overlap over the duration $\tau = [0, t]$. Therefore,

$$y(t) = \int_{0}^{t} x(\tau)h(t-\tau)d\tau = \int_{t-1}^{t} e^{-\tau}(1-t+\tau)d\tau$$
$$= (1-t)\int_{0}^{t} e^{-\tau}d\tau + \int_{0}^{t} \tau e^{-\tau}d\tau.$$
integral I

The two integrals simplify as follows:

integral
$$I = (1 - t) [-e^{-\tau}]_0^t = (1 - t)(1 - e^{-t});$$

integral II =
$$[-\tau e^{-\tau} - e^{-\tau}]_0^t = 1 - e^{-t} - te^{-t}$$
.

For $0 \le t \le 1$, the output y(t) is given by

$$y(t) = (1 - t - e^{-t} + te^{-t}) + (1 - e^{-t} - te^{-t}) = (2 - t - 2e^{-t}).$$

Case 3 For t > 1, we see from Fig. 3.8(g) that the non-zero part of $h(t - \tau)$ completely overlaps $x(\tau)$ over the region $\tau = [t - 1, t]$. The lower limit of the overlapping region in case 3 is different from the lower limit of the overlapping region in case 2; therefore, case 3 results in a different convolution integral and is considered separately from case 2. The output y(t) for case 3 is given by

$$y(t) = \int_{0}^{t} x(\tau)h(t-\tau)d\tau = \int_{t-1}^{t} e^{-\tau}(1-t+\tau)d\tau$$
$$= (1-t)\int_{t-1}^{t} e^{-\tau}d\tau + \int_{t-1}^{t} \tau e^{-\tau}d\tau.$$
integral I integral II

The two integrals simplify as follows:

integral I =
$$(1-t)[-e^{-\tau}]_{t-1}^t = (1-t)(e^{-(t-1)} - e^{-t});$$

integral II = $[-\tau e^{-\tau} - e^{-\tau}]_{t-1}^t = (t-1)e^{-(t-1)} + e^{-(t-1)} - te^{-t} - e^{-t}$
= $te^{-(t-1)} - te^{-t} - e^{-t}.$

For t > 1, the output y(t) is given by

$$y(t) = (e^{-(t-1)} - te^{-(t-1)} - e^{-t} + te^{-1}) + (te^{-(t-1)} - te^{-t} - e^{-t})$$

= $(e^{-(t-1)} - 2e^{-t}).$

Combining the above three cases, we obtain

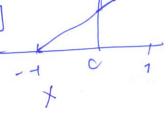
$$y(t) = \begin{cases} 0 & t < 0 \\ (2 - t - 2e^{-t}) & 0 \le t \le 1 \\ (e^{-(t-1)} - 2e^{-t}) & t > 1, \end{cases}$$

which is plotted in Fig. 3.9.

Q.3b) Determine if system with the following impulse responses:

- (i) $h(t) = \delta(t) \delta(t-2)$,
- (i) h(t) = b(t) b(t-2), (ii) $h(t) = 2 \operatorname{rect}(t/2)$, $2 \left(r(t+1) - r(t-1) \right)$

Are memory less stable and causal.



Solution

System (i)

Memoryless property. Since $h(t) \neq 0$ for $t \neq 0$, system (i) is not memoryl. The system has a limited memory as it only requires the values of the it signal within three time units of the time instant at which the outpubeing evaluated.

Causality property. Since h(t) = 0 for t < 0, system (i) is causal. — (1) Stability property. To verify if system (i) is stable, we compute the follow integral:

$$\int_{-\infty}^{\infty} |h(t)| \mathrm{d}t = \int_{-\infty}^{\infty} |\delta(t) - \delta(t-2)| \mathrm{d}t$$

$$\leq \int_{-\infty}^{\infty} |\delta(t)| \mathrm{d}t + \int_{-\infty}^{\infty} |\delta(t-2)| \mathrm{d}t = 2 < \infty,$$
with all steps

which shows that system (i) is stable.

System (ii)

Memoryless property. Since $h(t) \neq 0$ for $t \neq 0$, system (ii) is not memoryless.

Causality property. Since $h(t) \neq 0$ for t < 0, system (ii) is not causal. — (1) Stability property. To verify if system (ii) is stable, we compute the following integral:

$$\int_{-\infty}^{\infty} |h(t)| \mathrm{d}t = \int_{-1}^{1} 2 \, \mathrm{d}t = 4 < \infty,$$

which shows that system (ii) is stable. —— (1)

Determine the signal x(t) whose CTFT is a frequency-shifted impulse function $X(\omega) = \delta(\omega - \omega_0)$.

Solution

Based on the CTFT analysis equation, Eq. (5.10), we obtain

$$x(t) = \Im^{-1} \{ \delta(\omega - \omega_0) \} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta(\omega - \omega_0) e^{-j\omega t} d\omega$$

$$= \frac{1}{2\pi} e^{-j\omega_0 t} \int_{-\infty}^{\infty} \delta(\omega - \omega_0) d\omega = \frac{1}{2\pi} e^{-j\omega_0 t}.$$
(2)

Example 5.8 proves the following CTFT pair:

$$e^{j\omega_0 t} \stackrel{\text{CTFT}}{\longleftrightarrow} 2\pi \delta(\omega - \omega_0).$$
 (5.25)

Substituting ω_0 by $-\omega_0$ in Eq. (5.25), we obtain another CTFT pair:

$$e^{-j\omega_0 t} \stackrel{\text{CTFT}}{\longleftrightarrow} 2\pi \delta(\omega + \omega_0).$$
 (5.26)

Q4b)

In Example 3.6, we showed that in response to the input signal $x(t) = e^{-t}u(t)$, the LTIC system with the impulse response $h(t) = e^{-2t}u(t)$ produces the following output:

$$y(t) = (e^{-t} - e^{-2t})u(t).$$

We will verify the above result using the CTFT-based approach.

Solution:

$$e^{-t}u(t) \stackrel{\text{CTFT}}{\longleftrightarrow} \frac{1}{1+i\omega} \text{ and } e^{-2t}u(t) \stackrel{\text{CTFT}}{\longleftrightarrow} \frac{1}{2+i\omega}.$$

The CTFT of the output signal is therefore calculated as follows:

$$Y(\omega) = \Im\{[e^{-t}u(t)] * e[^{-2t}u(t)]\} = \Im\{e^{-t}u(t)\} \times \Im\{e^{-2t}u(t)\}.$$

Using the CTFT pair

$$e^{-at}u(t) \stackrel{\text{CTFT}}{\longleftrightarrow} \frac{1}{a+i\omega}$$

we obtain

$$Y(\omega) = \frac{1}{1 + j\omega} \times \frac{1}{2 + j\omega}, \qquad - \textcircled{\$}$$

In Example 3.6, we showed that in response to the input signal $x(t) = e^{-t}u(t)$, the LTIC system with the impulse response $h(t) = e^{-2t}u(t)$ produces the following output:

$$y(t) = (e^{-t} - e^{-2t})u(t)$$
.

We will verify the above result using the CTFT-based approach.

Solution

Based on Table 5.2, the CTFTs for the input signal and the impulse response are as follows:

$$e^{-t}u(t) \stackrel{\text{CTFT}}{\longleftrightarrow} \frac{1}{1+j\omega} \quad \text{and} \quad e^{-2t}u(t) \stackrel{\text{CTFT}}{\longleftrightarrow} \frac{1}{2+j\omega}.$$

The CTFT of the output signal is therefore calculated as follows:

$$Y(\omega) = \Im\{[e^{-t}u(t)] * e^{-2t}u(t)]\} = \Im\{e^{-t}u(t)\} \times \Im\{e^{-2t}u(t)\}.$$

Using the CTFT pair

$$e^{-at}u(t) \stackrel{\text{CTFT}}{\longleftrightarrow} \frac{1}{a+j\omega}$$

we obtain

$$Y(\omega) = \frac{1}{1 + i\omega} \times \frac{1}{2 + i\omega},$$
 — (1)

which can be expressed in terms of the following partial fraction expansion:

$$Y(\omega) = \frac{1}{1 + j\omega} - \frac{1}{2 + j\omega}. \quad \boxed{1}$$

Taking the inverse CTFT yields

which is identical to the result obtained in Example 3.6 by direct convolution.

In Example 3.3, the following differential equation

$$\frac{\mathrm{d}^2 w}{\mathrm{d}t^2} + 7\frac{\mathrm{d}w}{\mathrm{d}t} + 12w(t) = 12x(t) \tag{6.32}$$

was used to model the RLC series circuit shown in Fig. 3.1. Determine the zero-input, zero-state, and overall *response* of the system produced by the input $x(t) = 2e^{-t}u(t)$ given the initial conditions, $w(0^-) = 5V$ and $\dot{w}(0^-) = 0$.

Solution

Overall response The Laplace transforms of the individual terms in Eq. (6.32) are given by

$$X(s) = L\{x(t)\} = L\{2e^{-t}u(t)\} = \frac{2}{s+1},$$

$$W(s) = L\{w(t)\}.$$

$$L\left\{\frac{dw}{dt}\right\} = sW(s) - w(0^{-}) = sW(s) - 5,$$

$$\qquad \qquad \boxed{1}$$

and

((

(

$$L\left\{\frac{d^2w}{dt^2}\right\} = s^2W(s) - sw(0^-) - \dot{w}(0^-) = s^2W(s) - 5s.$$

Taking the Laplace transform of both sides of Eq. (6.32) and substituting the above values yields

$$[s^2W(s) - 5s] + 7[sW(s) - 5] + 12W(s) = \frac{24}{s+1}$$

or

$$[s^2 + 7s + 12]W(s) = 5s + 35 + \frac{24}{s+1} = \frac{5s^2 + 40s + 59}{s+1},$$

which reduces to

$$W(s) = \frac{5s^2 + 40s + 59}{(s+1)(s^2 + 7s + 12)} = \frac{5s^2 + 40s + 59}{(s+1)(s+3)(s+4)}.$$

Taking the partial fraction expansion, we obtain

$$\frac{5s^2 + 40s + 59}{(s+1)(s+3)(s+4)} \equiv \frac{k_1}{(s+1)} + \frac{k_2}{(s+3)} + \frac{k_3}{(s+4)},$$

where the partial fraction coefficients are given by

$$k_1 = \left[(s+1) \frac{5s^2 + 40s + 59}{(s+1)(s+3)(s+4)} \right]_{s=-1} = \frac{5 - 40 + 59}{(2)(3)} = 4,$$

$$k_2 = \left[(s+3) \frac{5s^2 + 40s + 59}{(s+1)(s+3)(s+4)} \right]_{s=-3} = \frac{45 - 120 + 59}{(-2)(1)} = 8,$$

and

$$k_3 = \left[(s+4) \frac{5s^2 + 40s + 59}{(s+1)(s+3)(s+4)} \right]_{s=-4} = \frac{80 - 160 + 59}{(-3)(-1)} = -7.$$

Substituting the values of the partial fraction coefficients k_1 , k_2 , and k_3 , we obtain

$$W(s) \equiv \frac{4}{(s+1)} + \frac{8}{(s+3)} - \frac{7}{(s+4)}$$

Calculating the inverse Laplace transform of both sides, we obtain the output signal as follows:

$$w(t) \equiv [4e^{-t} + 8e^{-3t} - 7e^{-4t}]u(t).$$

QU5b)
$$G(S) = \frac{7s - 6}{(S^2 - S - C)} = \frac{A}{S - 3} + \frac{B}{S + 2}$$

$$A = (S - 3) \times G(J) |_{S} = 3$$

$$A = 3$$

$$B = (S + 2) \times G(J) |_{S} = -2$$

$$B = 4$$

$$G(J) = \frac{3}{S - 3} + \frac{B}{S + 2} \qquad (2)$$

$$g(t) = 3e^{3t} u(t) + 4e^{2t} u(t) \qquad (2)$$

Q5c)
$$g(t) = 4 [r(t) - r(t-1) - u(t-4)]$$

 $G(s) = 4 [\frac{1}{s^2} - \frac{1}{s^2} e^{-s} - \frac{1}{s} e^{-4s}]$

Given the Laplace transform pair

$$\cos(\omega_0 t)u(t) \stackrel{L}{\longleftrightarrow} \frac{s}{(s^2 + \omega_0^2)}$$
 with ROC: Re $\{s\} > 0$,

derive the unilateral Laplace transform of $sin(\omega_0 t)u(t)$.

Solution

By applying the time-integration property to the aforementioned unilateral Laplace transform pair yields

$$\int_{0^{-}}^{t} \cos(\omega_{0}\tau) u(\tau) d\tau \stackrel{L}{\longleftrightarrow} \frac{1}{s} \frac{s}{\left(s^{2} + \omega_{0}^{2}\right)} \quad \text{with ROC: Re}\{s\} > 0, \qquad ---- \textcircled{2} \quad \mathcal{M}$$

where the left-hand side of the transform pair is given by

$$\int_{0^{-}}^{t} \cos(\omega_0 \tau) u(\tau) d\tau = \int_{0}^{t} \cos(\omega_0 \tau) d\tau = \frac{\sin(\omega_0 \tau)}{\omega_0} \Big|_{0}^{t} = \frac{1}{\omega_0} \sin(\omega_0 t).$$

Substituting the value of the integral in the transform pair, we obtain

Q6b) Find unilateral Laplace transform of $x(t)=t^2e^{-2t}$ u(t) using appropriate property.

$$u(t) \iff \frac{1}{5} \quad \text{Re[s]} > 0 \quad -.$$

$$Diff. \text{ in } 5' \qquad e^{2t} \text{ u(t)} \iff \frac{1}{5+2} \quad \text{Re[s]} > -2 \quad -1$$

$$domain - 1$$

$$t \cdot e^{2t} \text{ u(t)} \iff -\frac{d}{ds} \left[\frac{1}{(5+2)} \right] \quad \text{Re[s]} > -2$$

$$t \cdot e^{2t} \text{ u(t)} \iff -\frac{1}{(5+2)^2} \quad \text{Re[s]} > -2$$

$$t^2 e^{2t} \text{ u(t)} = t \cdot t \cdot e^{2t} \text{ u(t)} \iff \frac{2}{(5+2)^8} \quad \text{Re[s]} > \frac{2}{2}$$

$$x(0) = \lim_{S \to \infty} Sx(s) \qquad -(1)$$

$$= \lim_{S \to \infty} \frac{S^2}{S^2 + \omega_0^2} = \lim_{S \to \infty} \frac{1}{1 + \frac{\omega_0^2}{S^2}} = 1$$

$$\chi(0) = \lim_{S \to 0} S\chi(0) = 0$$

$$\chi(0) = \lim_{S \to 0} \frac{S^2}{S^2 + \omega_0 2} = 0 - 1$$

Q7a) Define autocorrelation of energy signal. State and prove its properties. 6M

- R(ζ) = R(-ζ) Even symmetry
 - R(o) = E value of auto correlation function at equal to the energy of the signal
 - $|R(\zeta)| \le R(0)$ for all values of ζ . Maximum value is at the origin $_{F.T.}$
 - R(ζ) Ψ(f)

Q7b)

$$R_{\lambda}(u) = \{-4, 8, -11, 18, -11, 8, -4\}$$

correct ans with any method

Q7c) What is correlogram Explain with suitable example 4M Correlogram * Correlation is a mathematical too! to find compare signa * Sorrelogean is a plot to compare signals. * Plot of amplitude of one signal versus amplitude of other * To find whether the signals are correlated or not. * To draw the correlogram, plot the amplitude of one sign v/s the amplitude of second signal. Signals and their Correlograms eaca mples > y(+) at St lin) x(1) = A Si-2 TI ft (2) M y(t) = A Sing Ti ft ×(+) 2) y(t) = -x(t) Highly Correlated. x(6t)3) x(+) = A Sin 2 Tift y(+) = A Cos 2 TI ft ~>c(t)

any teuro

Power spectral density

Power spectral density is defined as

$$S_{x}(f) = \lim_{T \to \infty} \frac{1}{2T} |X_{p}(f)|^{2}$$

Death.

Properties of PSD

- The PSD of power signal x(t) is non negative real valued function of frequency $S_{rr}(f) > 0 \text{ for all } f$
- $S_{x}(f) \geq 0$ for all f• The PSD of real valued power signal x(t) is an even function of frequency $S_{x}(f) = S_{x}(-f)$
- The total area under the curve of PSD of power signal x(t) equals the average signal power

$$P = \int_{-\infty}^{\infty} S_x(f) df$$