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Q1 a) Classify the continuous time signal shown in figure below as

energy or power signal.
6M

5 | z(t)

£ % 4 ~3 @B -3 X 6 %

Solution:

(b) The signal z(¢) is a periodic signal with fundamental period 8 and over
one period is expressed as follows:

3 -2<1rx2
:(r}m{O ?jf—' S @

with z(r + 8) = z(¢). The instantancous power, average power, and energy of

-

the signal are calculated as follows:

25 -2
0 2 <

A

. P22
instantaneous power 2= | e

and P;(t + 8) = P;(1); ]

4 2
1 I (
average power P, = gflz(ljizdt s §f25 df = 12) =Aiday. T @
-4 -3 ‘V
o0
energy By f ZOPdt =00.
¢ ) ®

Because the signal has finite power (0 < P, = 12.5 < 00), z(f) is a power
signal.




Q. 1b)
Express the CT signal
) = t 0<i=<l
=10 elsewhere
as a combination of an even signal and an odd signal. &6M |
1

Solution :

In order to calculate x.(f) and x,(1), we need to calculate the function x(—1),
which is expressed as follows:

t 0<—t1<l _ -t =1=r=0
0 elsewhere | 0  elsewhere.

x(—1) = {

Using Eq. (1.20). the even component xe(r) of x(r)is given by

iz O0<r <l
1 7
xo() = —Q-Ix(f)ﬂr-x(*!)l ok A b i

2
L= @ 0 elsewhere,
while the odd component x,(7) is evaluated from Eq. (1.21) as follows:

1
i 0<t <l
1 %
@ =skO-x(=D1=1", 140

2
L @ 0 elsewhere.

The waveforms for the CT signal x(7) and its even and odd components are
plotted in Fig. 1.11.
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Q.2a) The system with excitation, x(t), and response, y(t), described by:

y(n) = X(:";"
Determine whether it is causal, Linear, Time Invariant, Stable?
Solution: v

Homogeneity:

'
Let x,(7)=g(7). Then y,(¢)= g(z)
t

Let x,(1)=Kg(#). Then y,(t)= Kg(—;) =Ky, ().

Homogeneous

Additivity:

Let x,() = g(f). Then y,(f)= C(é)
Let x,(#)=h(7). Then yz(r)zh(é).

Let x,(7)=g(#) +h(7). Then y,()= g(é) h(%) =y,(t) +y,(7)
Additive ' l L (>

Since it 1s both homogeneous and additive, it is also linear.

It is also incrementally linear, since any linear system is incrementally linear.

It 1s not statically non-linear because it is linear.
. X e el o
Time Invaniance: | @

Let x,(1)=g(#). Then y,(1)= g(zi)

Let x,(r)=g(f-1,). Then y,(#)= g(gr— ri,);t y(t—1,)= g(f_zfo). |

Time Variant

Sl e

Stability: I,
If x(7) is bounded then y(#)is bounded.
Stable

N




Causality: _
At time, t=-2, y(-2)=x(-1). Therefore the response at time. /=-2, depends on the

excitation at a later time, = —1.

Not Causal @

Q2b) The system with excitation, x(t), and response, y(t), described by:

y(1) = cos(27) x(1)

Determine whether it is causal, Linear, Time Invariant, Stable?
Solution:

Homogeneity:
Let x,(7)=g(7). Then y,(7)=cos(27r)g(r).
Let x,(7)=Kg(#). Then y,(t)=cos(2a)K g(r) = K y, (7).

—_—
Homogeneous L
Additivity:
Let x,(#)=g(#). Then y,(r) = cos(27mr)g(1).
Let x,(#)=h(7). Then y,(7)= cos(27)h(z).
Let x,(7) = g(7) + h(7). Then y,(#) = cos(2ar)[g(r) + h(r)]= v,(1) + y.(7)
Additive
Since it is both homogeneous and additive, it 1s also linear.
It is also incrementally linear, since any linear system is incrementally linear.
It is not statically non-linear because it is linear. @
Time Invanance:
Let x,(f)=g(7). Then y,(7) = cos(2m)g(r).
Let x,(r)=g(¢—1,). Then y,(r)=cos(2m)g(r—1,) # y,(1—1,) = cos(27(r - o)) gt =1,).
Time Variant
Tme Vi (5) g
Stability:

If x(7) is bounded then y(7)is bounded because it is multiplied by a cosine which is
bounded.
Stable

@

Causality:

The response at any time, 7=/, depends only on the excitation at that same time and not on
the excitation at any later El}xe.
Causal —_—

Q3a) The input signal x(t)= e-t u(t) applied to the system whose impulse
response is given by

h(r):{l"’ 0<t<i

0 otherwise.
Calculate the output of the system.

& o



Solution:

Solution

In order to calculate the output of the system, we need to calculate the convo-
lution integral for the two functions x(r) and h(r). Functions x(r), h(r), and
h(—7) are plotted as a function of the variable 7 in the top three subplots of
Fig. 3.8(a)~(c). The function /(1 — 1) is obtained by shifting the time-reflected
function i(—7) by . Depending on the value of 7, three special cases may
arise.

ATy fiT)
2 ‘l\_% e~Tr(T) ? _N—n
_’_ﬁ_—._,_“_‘
- -3 o = T
(a) (b)
frf—T) Hid—E)
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() (a)
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Fig. 3.8. Convolution of the T _H_!,
Input signal x{f) with the T il sarc T

impulse response fi(f) in
Example 3.8. Parts (a)--(g) are
discussed in e text. &

Case 1 Fort < 0, we see from Fig. 3.8(¢) that the non-zero parts of h(r — 1)
and x(7) do not overlap. In other words, output y(r) = 0 for ¢t < 0. @

Case2 For0 <t <1, we see from Fig. 3.8(f) that the non-zero parts of (¢t — 1)
and x(7) do overlap over the duration T = [0, 7]. Therefore,

t  §
yit) = fx{r}h(r —t)idr = fc:“'f_l — 1+ 1)t
0 =1
t 4
= (1 — r)/e“'dt +[re_rdr.
. v . >
integral I integral 11

Sleetth

'y




The two integrals simplify as follows:

integral [ = (1 —1) [e~*lg=(l =1 —e7"); ; .

T { § e

integral [l = [—te ™" —e " ]f=1—e"" —te

For 0 <t < 1, the output y(¢) is given by .
yO=(=t—e*3+reN+U-ct=teN=C-t-2" —@
Case 3 Fort > 1, we see from Fig. 3.8(g) that the non-zero part of hi(f — 1)

completely overlaps x(r) over the region t = [t — |, 7]. The lower limit of
the overlapping region in case 3 is different from the lower limit of the over-

|
lapping region in case 2; therefore, case 3 results in a different convolution ‘
integral and is considered separately from case 2. The output y(¢) for case 3 is & |
given by e !
' 1 |
)= f.x(r)h(r — 1)t = f e (] —r+ 1)t
0 t=1
5 t |
= (1 wt)fe“’dt-{« [ re dr. !
. t—1 —1 - |
Enlc;'af 1 imcgwr'al 11

The two integrals simplify as follows;

integral [ = (1 — H)[—e™"]!_, = (1 —1)(e "V —¢™);
integral [ = [—te™ —e !, =@ — De ™"V e _pe _ o~

=te "D e~ — e, . -~
For ¢t > 1, the output y(r) is given by
y) = (e — etV e te™!) + (te UV — et — )
=(e™V—2e7).
Combining the above three cases, we obtain _®

0 t <0
i) =3 Q2—-r—-2"" 0<1<|
¢V =21 1,

which is plotted in Fig. 3.9.




(1)

Q.3b) Determine if system with the following impulse responses: ;. [J—

(i) h(r) = 8(t) - o(r - 2), !
() b =2rectt/D), 2 [r(b+1d =Yt =1} (
Are memory less stable and causal.
. A L 1
Solution 7L
System (i)

Memoryless property. Since h(t) # 0 fort # 0, system (i) is not memoryl —AD
The system has a limited memory as it only requires the values of the it '
signal within three time units of the time instant at which the outpu
being evaluated.

Causafity property. Since h(t) = 0 for t < 0, system (i) is causal. el A}

Stability property. To verify if system (i) is stable, we compute the follow
integral:

00 o0
f Jh(t)|dt = /|5(r) — &(t — 2)|dt
—00 -0

00 00
=< [|5(!§ld! + [ [8(r — 2)|dt = 2 < o0,
—o0 —00 ith all steps

which shows that system (i) is stable. —&F

System (ii)
Memoryless property. Since h(t) # 0 for t # 0, system (i1) is not memory-
less. : .
Causality property. Since h(z) # 0 for 1 < 0, system (ii) is not causal. — (1)
Stability property. To verify if system (i1) is stable, we compute the following
integral:

o0 1
/f}z(md:m [Zd: =4 < 00,
-0 "

~1
which shows that system (i1) is stable. — @




Q.4a)

Determine the signal x(1) whose CTFT is a frequency-shifted impulse function
X(w) = 8{w — wy).

Solution
Based on the CTFT analysis equation, Eq. (5.10), we obtain

o0
x(1) = 37 Ho(w — wo)} = % f 8w — wp)e ' dw 8
—00

Il

oG
e o "0 f 8w — wo)dew = ——e 107
2T 2m
] " @

Example 5.8 proves the following CTFT pair:
el 2 8(ew — cu(}).' (5.25)

Substituting wgp by —wy in Eq. (5.25), we obtain another CTFT pair:

eIt ﬂ 2a8(ew + wp). — @ (5.26)

Q4b) _
In Example 3.6, we showed that in response to the input signal x () =¢ ™" u(1), the

LTIC system with the impulse response /i(¢) = ¢~ u(t) produces the following
output:

y(t) = (e — e 2 )u(t).

We will verify the above result using the CTFT-based approach.
Solution : - a—— O I’/@

CTFT 1 CTFT
e ult) > - - and e u(r) > : N
1+ jew 2 + jw

The CTFT of the output signal is therefore calculated as follows:
Y(w) = 3{{e " u®)] * e[ Zu@®)]} = Je ™ ur)} x Je"Zu(n)}.
Using the CTFT pair

CTFT 1

—qaf t ’
eV nlt) myran

we obtain

Yiw) = : — X : — e
P 4+jo 2+ jw
—




In Example 3.6, we showed that in response to the input signal x(f)=c¢~"u(r). the
LTIC system with the impulse response /i(t) = e~ u(t) produces the following
output:

y(t) = (e™" — e ulr). — @

We will verify the above result using the CTFT-based approach.

Solution
Based on Table 5.2, the CTFTs for the input signal and the impulse response

are as follows: [/__,@ ‘/,)@

CTFT | 1
e Tu(r) < > : and e 2 u(n) s,
I+ Jw 2+ Jeo
)
The CTFT of the output signal is therefore calculated-as follows:
(
" Y(w) = e ult)] # | Hu@)]} = e ult)} x e~ ulr)}.
Using the CTFT pair
, 1
e u(t) N e
a—+ jw
we obtain
_ | |
Y{w) = — X —, '__"ED
l+j0 2+ jw
which can be expressed in terms of the following partial fraction expansion:
A I l
Y(w) = — - — — @
( l+jw 2+ jo

Taking the inverse CTFT yields
&,

¥() = (™" — e ()

which is identical to the result obtained in Example 3.6 by direct convolution.
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Q5a)

In Example 3.3, the following ditferential equation

D
d w dw _ A
T— 4 12w () = 12x(¢) (6.32)
dr? dt
was used to model the RLC series circuit shown in Fig. 3.1. Determine the
zero-input, zero-state, and overall response of the system produced by the input

x(1) = 2e"u(t) given the initial conditions, w(07) =5V and w(07) = 0.

Solution

Overall response The Laplace transforms of the individual terms in Eq. (6.32)

are given by

2
X(s) = L{x(n} = L{2e7u(1)} = —,
1
Wis) = L{w{n),
l 5
L {f;lﬁ:_} = sW(E) ~ D) = W) — 5, — @

and

L. { I == SE’W(S) — sw(07) — Ww(07) = s“W(s)— 5s5s. — A
dr2?

Taking the Laplace transform of both sides of Eq. (6.32) and subsututing the

above values yields

24

y+ 1

[s2W(s) — 5s] + T[sW(s) — 5] + 12W(s) =

or

. i _ 24 557 +40s + 59
ISZ—}—?A"—%—-iEIW{S)::“_i_BJ_!_\-+ e ' F—éy)

| s+ 1

»



which reduces to

Wis) = 552 + 40s + 59 _ 5524405 +59 '
+DE2+Ts+12) G+ D+ +4)
‘ Taking the partial fraction expansion, we obtain
552 + 405 + 59 ky k2 k3

= -+ — ; .
(s + s +30s +4) s+ 1) s+ 3) (s +4)

where the partial fraction coefficients are given by

552 + 405 + 59 5 —40+59
k1=[f.‘l‘i—|) 3+.S_i._ ] =‘—,‘j——'=4
s+ D +3)s+4) |, __, (2)(3)
5s? + 40s + 59 5— 120+ 59
A~z:[m+3) B e ] - AP O g

s+ s +3s+ D T (—2¥ 1)

and
; . 55% 4405 + 59 80 — 160 + 59
k3 = | (s +4)- : - = o
7Y G4+ IDs+3s+4)],__, (=3)(—1)
_ Substituting the values of the partial fraction coefficients k. ko, and k3. we
({ obtain
4 8 7
Wis) = o — :

O=EFD Yo vy T o @
Calculating the inverse Laplace transform of both sides. we obtain the output
signal as follows:

wi(t) = [de™ + 8¢ ™ — Te ™ u ().
13
QU 5b) Fs -~ 6 _ A | < fo
G— f ,S) — 2 — = & 6
(s©— s =)
Az Cs-4)& G JS* B
- A= 3

B gee) s 4 [rek) —rit-1) —uct = <]




Q6a)

Given the Laplace transform pair
L 5 e
cos(wot )u(t) <— —  with ROC: Re{s} > 0, -
(s2+ wp)

derive the unilateral Laplace transform of sin(wq? )u(7).

Solution (-7 dibF
By 4'I-’J_L|\"i“i-‘—ﬁE,J_;@t:_intc‘gm_tig&ma&mﬂgh aforementioned unilateral
Laplace transform pair yields @ M

!

Lo s _ e \
/cos(m{,r)u(r)dr«ﬁ ————  withROC: Re{s} > 0, —_— @ M
A (SZ -+ wﬁ)

o
where the left-hand side of the transtorm pair is given by
] 1
o7 iy
. sinlepT ) |
coslwgT w(t)dr = CL).‘»{(U(;T}L[I = — = — sillwyl ). -——/—"@
4 X |“ wx
0~ 0
Substituting the value of the integral in the transform pair, we obtain IS
. L W g = .
sin{ewgt )u(r) ~ - with ROC: Re{s} = 0, (9
(s°+ wp)

Q6b) Find unilateral Laplace transform of x(t)=t%e** u(t) using appropriate

property.
utt) «—> = k] IP =
. Ny = R -2
dDiFf-‘ in J‘@ &t k) 0w 5 R —O
(Main
-~z t 4 \ J Rels] >-2
b= £ ult) e—— gs | Cse2
{7' e‘«l'{fq(t_) PN f }J\C[K.S] >_ 2. )
CS+2)* L— @

-2 + 9
tLer(f_): JL; t eét_u (_t')} - —L‘_)—‘T- EP]F_Q‘}.%?
/ (1)
— - = e —




|
|
|

X () -~ Am S X Q) _..a'—"__"@

s—0
;
P TR
wila = = —G < Wt

Q7a) Define autocorrelation of energy signal. State and prove its properties.
6M
R(@)=R(-7 Even symmetry
® R(o)=E value of auto correlation function at origin is
equal to the energy of the signal
®* |R(7)| <=R(0) for all values of Z. Maximum value is at

the origin 1
* RO W any three  properi™el
wH‘fW ng\’af: ——'@ QQ(L\

2 =8 1, =

7, r

-2 t 6. =27 &y

- #

Q7b)

-

’
'2,,.‘_-3/'1‘ -2

1 ]
- v
g 7 = /0’
—_5 -6/ (j/ 3.1 b
4 i
2 |4 6,72 7"
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Q7c) What is correlogram Explain with suitable example 4M

ool anylis 4| D
e ’('")V\Q,li one _eovrelated on ol

'fT mchxxwg 5 o#'md«w J\«o{ec ru\@_,;z‘
v[‘é M%M#LMQ O’g rﬁcchc{ ’\i{ji«ki T/L ﬁ e

Sigrals  avd  Jaiy  Comvelooaonna .

b o iyt S B ARSI T ?alQMPJQ
o = poiliy ;
B =@ = A%z nFE f

C ;wmit}ﬂ
: BsEERS et/ te.. 2
: 3{3’) E- e e o //ir s T w-adé .
P % Eu f <.

L R R S 1"‘““‘3"""‘1 Corne latenl .

s U(:Hw,..u——‘mﬁt) s \\I g 5513 B dices sidf. —ee

BT j {4‘) Lo ‘?T_v..?eab-!?. ol s
S m&uj Corna lede ol

e e A
m_.,.m_mw\j. (). = ot o wL£y .

d’lc\ ff«a_m_

Cp ‘b’"ﬂ’éJorj«r S :‘,
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Q8c)

Power spectral density

Power spectral density is defined as
| 2
Sx(f) e ,I]&?;E',flxp(f)l @

Properties of PSD

+ The PSD of power signal x(t) is non negative real valued function of frequency y @ eo (Lu )
Sy(f)=0foral f

+ The PSD of real valued power signal x(t) is an even function of frequency

Sx(f) = 5x(=f)

« The total area under the curve of PSD of power signal x(t) equals the average signal power

p= fis (Fdf on




