[Max. Marks: 20]

G.R. No.	Paper Cocle -	U118	-104C	B (T1)
----------	---------------	------	-------	--------

OCTOBER 2018 / IN-SEM (T1)

F. Y. B.TECH. (CB) (SEMESTER - I)

COURSE NAME: Engineering Physics-CB

COURSE CODE: ES10184A-CB

(PATTERN 2018)

Time: [1 Hour]

(*) Instructions to candidates:1) All questions are compulsory.

- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed.
- 4) Use suitable data where ever required.

Q 1) Attempt any two.

- a) With the help of a neat diagram, derive the expression for geometrical path difference between the two rays reflected from the top and the bottom surfaces of a thin uniform film. The refractive index μ of the film is greater than that for the media on both sides of the film. [4]
- b) Draw intensity as a function of angle of diffraction θ for Fraunhofer diffraction from a single slit. Discuss the significance of wavelength to slit width ratio in diffraction effect. [4]
- c) A laser light of wavelength 6328Å falls normally on a grating which is 2 cm long. The first order spectrum is observed at an angle of 20°. Find the total number of slits on the grating. [4]
- Q 2) Attempt any two.
 - a) Given the density of states $g_c(E) = \frac{4}{\sqrt{\pi}} \left[\frac{m_e^*}{2\pi h^2} \right]^{3/2} (E E_c)^{1/2}$, derive the expression for n, the number of electrons per unit volume in the conduction band. [4]
 - b) The effective density of states for the conduction and valence bands for GaAs are N_c =4.7x10¹⁷ cm⁻³ and N_v =7.0x10¹⁸ cm⁻³, respectively and a band gap of 1.42eV at a temperature T=300K. Calculate the intrinsic carrier density n_i .
 - c) Draw the Fermi-Dirac distribution function for temperatures T = 0 K, T1 and T2 where T2 > T1 > 0 K. Discuss the physical significance of the temperature dependence of Fermi-Dirac distribution function. [4]

Q 3) Attempt any one.

a) Discuss critical angle loss in a planar LED by deriving the expression for $\frac{P_{escape}}{P_{source}}$. [4]

b) Draw the I-V characteristics of a solar cell and discuss the significance of open circuit voltage, short circuit current and Fill Factor. [4]

ATTEMMENT OF COMESTAN

VALLE Engineering Physics C &

LODE: ESTOTS4A-CE

(PATTERN 20 E

speciality and set to a good a

the of normality calendator is allowed.

by the state of th

The marks Dissured and Land Company of the company

The state of the s

The second of th