MARKING SCHEME

Total	No.	of	Questions -	[4
-------	-----	----	-------------	----

G.R. No.	THE RIVER	33 a 16

Total No. of Printed Pages: 01

P118-132 (TI)

OCTOBER 2018 / IN - SEM (T1)

F. Y. M. TECH. (COMPUTER ENGINEERING) (SEMESTER -I)

COURSE NAME: OPERATING SYSTEM DESIGN

COURSE CODE: CSPA11182 (PATTERN 2018)

Q.1) a.	3-4 difference between sharing the resource and multiplexing a resource?			
b.	mask off the system call concept [2] and program error interrupts[2]	[4]		
	OR			
Q.2) a.	Discussion on both programs.			
b.	Various control registers in user mode			
Q3) a.	Explian variable argc. And why it cannot be 0			
b.	Pipes [2] and variable sized messages[2]			
	OR			
Q.4) a.	Signaling[2], rendezvous[2] and the producer-consumer patterns[2]			
b.	Mutual exclusion IPC pattern.	[4]		

Total No. of Printed Pages: 1

SOLUTION

PH8-132 (T1)

OCTOBER 2018 / IN - SEM (T1)

F. Y. M. TECH. (COMPUTER ENGINEERING) (SEMESTER -I)

COURSE NAME: OPERATING SYSTEM DESIGN

COURSE CODE: CSPA11182 (PATTERN 2018)

q.1) a. sharing the resource: It is a device or piece of information on a computer that can be remotely accessed from another computer, typically via a <u>local area network</u> or an enterprise <u>intranet</u>, transparently as if it were a resource in the local machine. and multiplexing a resource: Typically the resource is shared or *multiplexed* between the users. This can take the form of *time-multiplexing*, where the users take turns (e.g., the processor resource) or *space-multiplexing*, where each user gets a part of the resource (e.g., a disk drive).

b. mask off the system call: standard **interrupt-masking** techniques in the system cannot ignore. It typically occurs to signal attention for non-recoverable hardware errors and program error interrupts: An **interrupt** is a signal from a device attached to a computer or from a **program** within the computer that requires the operating system to stop and figure out what to do next.

[4]

OR

Q.2) a. Discuss both the programs from time complexity and space complexity point of view [6]

b. Discuss control registers like CR0,CR1 in user mode [4] q3A.In C++ argument passing here is a variable argc. The name of the variable argc stands for "argument count"; argc contains the number of arguments passed to the program. The name of the variable argv stands for "argument vector". A vector is a one-dimensional array, and argv is a one-dimensional array of strings.

[6]

b.: Pipe is one-way communication only i.e we can use a pipe such that One process write to the pipe, and the other process reads from the pipe. It opens a pipe, which is an area of main memory that is treated as a "virtual file". [4]

Q.4) a. The relationship between signaling: **Signals** are a limited form of inter-process communication (IPC), typically used in Unix, Unix-like, and other POSIX-compliant operating systems. A **signal** is an asynchronous notification sent to a process or to a specific thread within the same process in order to notify it of an event that occurred, rendezvous: A rendezvous occurs when two processes synchronize and subsequently exchange messages. Rendezvous is symmetric, in that processes that wish to communicate both use the same primitive; and processes invoke Rendezvous with class designations, not procedure names

b. mutual exclusion IPC pattern: In computer science, mutual exclusion is a property of concurrency control, which is instituted for the purpose of preventing race conditions; it is the requirement that one thread of execution never enter its critical section at the same time that another concurrent thread of execution enters its own critical section.