U218-125(T1)

G.R. No.

OCTOBER 2018/ IN-SEM (T1)

S. Y. B. TECH. (COMPUTER ENGINEERING) (SEMESTER - I)

COURSE NAME: DIGITAL SYSTEMS AND LOGIC DESIGN

COURSE CODE: CSUA21175

(PATTERN 2017)

Time: [1 Hour]

[Max. Marks: 30]

[4]

[6]

Instructions to candidates:

- 1) Answer Q.1 OR Q.2 and Q.3 OR Q.4.
- Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed
- 4) Use suitable data wherever required
- Q 1) a) Minimize logic function using K-map and implement it using logic gates.

$$Y (A, B, C, D) = \Sigma m (0, 1, 2, 3, 5, 7, 8, 9, 11, 14)$$
 [6]

 b) Simplify the four – variable Boolean function using Quine –McCluskey Methods.

$$Y (A, B, C, D) = \Sigma m (2, 4, 5, 9, 12, 13)$$
 [6]

c) Convert decimal number (109.125)10 to their binary equivalents.

OR

- Q2) a) Reduce function using K-map technique and implement using basic [6] gates. Y (A, B, C, D) = A'B'D+ABC'D'+BCD
 - b) Simplify function using Quine-McCluskey method

$$Y(A,B,C,D)=\Pi M(1,4,6,9,10,11,14,15)$$

c) Represent (64)₁₀ in 2's complement using 8 bits. [4]

Q3)	a) Design 4-bit BCD to excess-3 code conversion with truth table, k-map	[6]
	and logic circuit.	
	OCTOBER SDIS LESSER (T.O.	
	b) Implement 8:1 Mux using a 4:1 and 2:1 Mux.	[4]
	c) Implement 2 Bit Comparator along with truth table, k-map and logic	[4]
	diagram using gates. [VI [92] MARIY [AS]]	
	OR USUADABABABABA OT A INDICATOR	
Q4)	a) Implement Boolean expression using multiplexer	[6]
	Y=A'BC'+AB'C'D+A'B'D+A'CD	
	b) Design a full-adder using 3-to-8-line decoder.	[4]
	c) Implement 4-bit even parity generator along with truth table, k-map	[4]
	and logic diagram using gates.	

the tip of the second second is a second