Total 1	No. of	Questions -	[04
---------	--------	-------------	------

Total No. of Printed Pages 2

G.R. No.		

Paper code 7 comp - U218-121(T1) JIT - U218-141(T1)

OCTOBER 2018/ IN-SEM (T1)

S. Y. B. TECH. (COMPUTER ENGINEERING/ INFORMATION

TECHNOLOGY) (SEMESTER - I)

COURSE NAME: DISCRETE STRUCTURES & GRAPH THEORY

COURSE CODE: CSUA21171/ ITUA21171

(PATTERN 2017)

Time: [1 Hour] [Max. Marks: 30]

Instructions to candidates:

- 1) Answer Q.1 OR Q.2 and Q.3 OR Q.4.
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed
- 4) Use suitable data wherever required
- Q.1) a) i) Show that $p \rightarrow q$ and $\neg q \rightarrow \neg p$ are logically equivalent. (06) ii) Show that $\neg p \leftrightarrow q$ and $p \leftrightarrow \neg q$ are logically equivalent.
 - b) Prove that $1^2 + 3^2 + 5^2 + \cdots + (2n+1)^2 = (n+1)(2n+1)(2n+3)/3$ whenever n is a (06) nonnegative integer.
 - c) Let p and q be the propositions p: You drive over 65 miles per hour. (04)

q: You get a speeding ticket.

Write these propositions using p and q and logical connectives (including negations).

- i) You do not drive over 65 miles per hour.
- ii) You drive over 65 miles per hour, but you do not get a speeding ticket.
- iii) You will get a speeding ticket if you drive over 65 miles per hour.
- iv) If you do not drive over 65 miles per hour, then you will not get a speeding ticket.

OR

- Q.2) a) Prove that the statement $1^2 + 2^2 + \cdots + n^2 = n(n+1)(2n+1)/6$ for the positive integer n. (06)
 - b) Among 18 students in a room, 7 study mathematics, 10 study science, and 10 study computer programming. Also, 3 study mathematics and science, 4 study mathematics and computer programming, and 5 study science and computer programming. We know that 1 student studies all three subjects. How many of these students study none of the three subjects?
 - c) Let p, q, and r be the propositions
 p: You have the flu.
 q: You miss the final examination.

r: You pass the course.

Express each of these propositions as an English sentence.

i)
$$p \rightarrow q$$

ii)
$$\neg q \leftrightarrow r$$

iii)
$$q \rightarrow -r$$

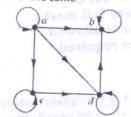
- Q.3) a) Use Warshall's algorithm to find the transitive closures of the relation R= {(2, 1), (2, 3), (3, 1), (3, 4), (4, 1), (4, 3)} defined on A= {1, 2, 3, 4}?
 - Find the solution to $a_n = 7a_{n-2} + 6a_{n-3}$ with $a_0 = 9$, $a_1 = 10$, and $a_2 = 32$. (04)

(06)

(04)

Determine whether each of these functions from Z to Z is onto.

i)
$$f(n) = n - 1$$


ii)
$$f(n) = n^2 + 1$$

iii)
$$f(n) = n^3$$

iv)
$$f(n) = n^2$$

OR

Determine whether the relation with the directed graph shown is a partial order. (06) Q.4)Also draw the Hasse diagram for the same

- Find the solution to $a_n = 2a_{n-1} + 5a_{n-2} 6a_{n-3}$ with (04) $a_0 = 7$, $a_1 = -4$, and $a_2 = 8$.
- c) Determine whether each of these functions is a bijection from R to R. (04)a) f(x) = 2x + 1b) $f(x) = x^2 + 1$