50 lution U218-136(TY)

Total No. of Questions - [4]

Total No. of Printed Pages 05

G.R. No.

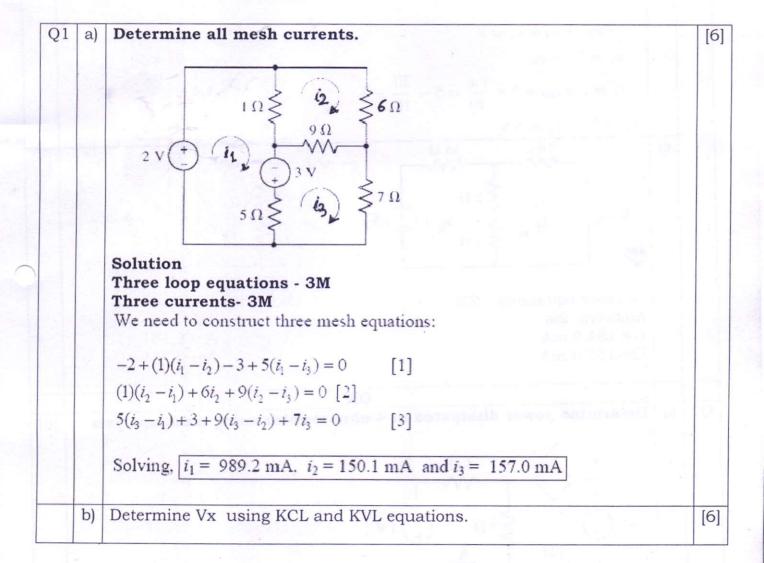
OCTOBER 2018/IN-SEM (T1)

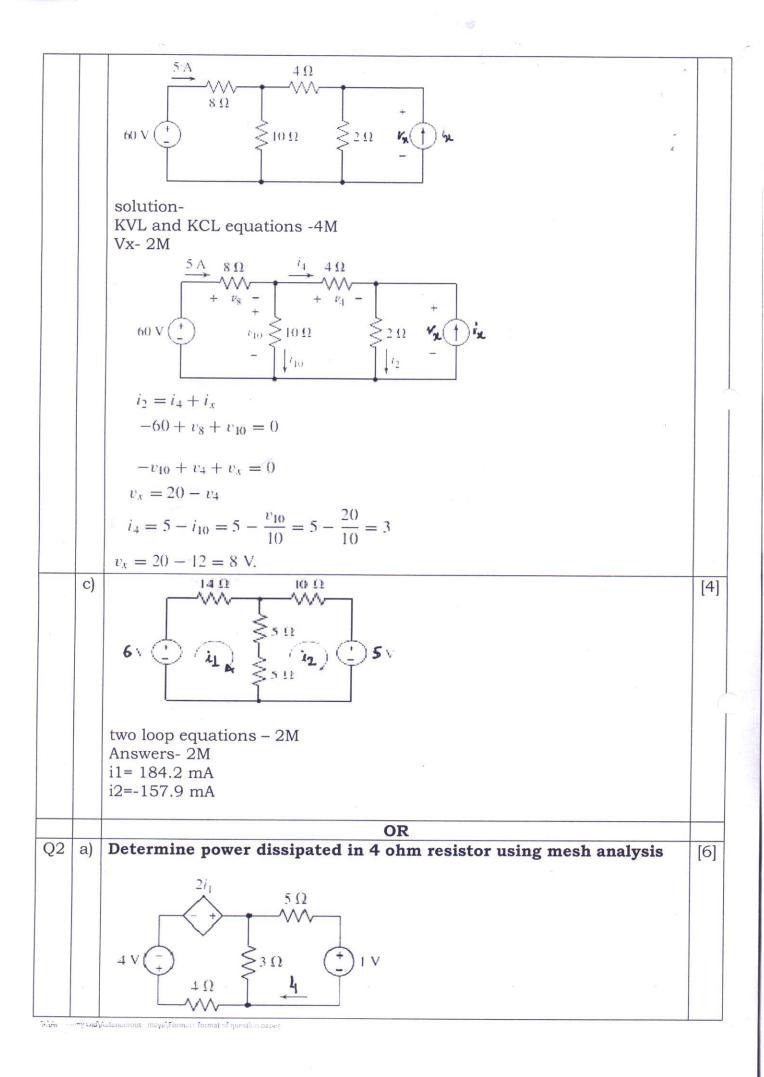
S. Y. B. TECH. (E & TC) (SEMESTER - I)

COURSE NAME: NETWORK THEORY

COURSE CODE: ETUA21176

(PATTERN 2017)


Time: [1Hour]


[Max. Marks: 30]

(*) Instructions to candidates:

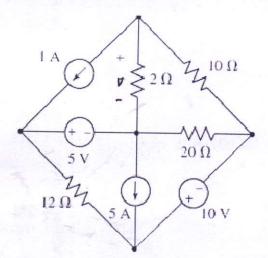
CA months _ Lutor mous - mayatt-compts-format of good to pope

- Answer Q.1 OR Q.2 and Q.3 OR Q.4. 1)
- Figures to the right indicate full marks. 2)
- 3) Use of scientific calculator is allowed
- 4) Use suitable data wherever required

Loop equations - 3 M

Power calculations -3 M

In the lefthand mesh, we define a clockwise mesh current and name it i_2 . Then, our mesh equations may be written as:


$$4 - 2i_1 + (3 + 4)i_2 - 3i_1 = 0$$
 [1]
-3i₂ + (3 + 5)i₁ + 1 = 0 [2]

(note that since the dependent source is controlled by one of our mesh currents/variables/unknowns, these two equations suffice.)

[6]

Solving,
$$i_2 = -902.4 \text{ mA}$$
 so $P_{4\Omega} = (i_2)^2 (4) = 3.257 \text{ W}$

b) Determine the voltage v across 2 ohm resistor using nodal analysis

Nodal equations – 4M

Determination of v- 2M

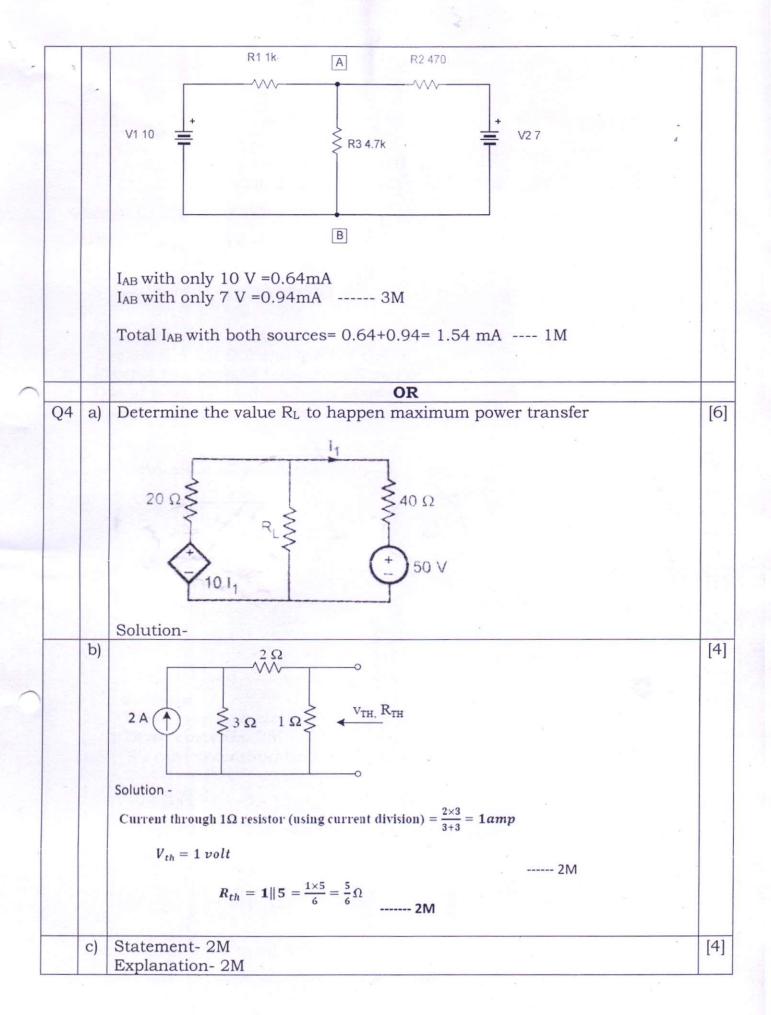
We select the central node as the reference node. We name the left-most node v_1 ; the node v_2 , the far-right node v_3 and the bottom node v_4 .

By inspection, $v_1 = 5 \text{ V}$

We form a supernode from nodes 3 and 4 then proceed to write appropriate KCL equations:

$$-1 = \frac{v_2}{2} + \frac{v_2 - v_3}{10}$$
 [1]

$$5 = \frac{v_3 - v_2}{10} + \frac{v_3}{20} + \frac{v_4 - v_1}{12}$$
 [2]


Also, we need the KVL equation relating nodes 3 and 4, $v_4 - v_3 = 10$

Solving,
$$v_2 = v = 1.731 \text{ V}$$

7 \Sutonomy Old\vu....omous - maya\Formats-format of question pape

	(c)	compute the voltage Vacross the 1 M ohm resistor using repeated source transformations.	ce [
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		Solution- Conversion of current sources to voltage sources- 2M V= 27.2 V - 2M	
23	a)	Obtain Thevenin's equivalent for the following network	
		equivalent for the following network	[6
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		Solution- $-4 + 2 \times 10^3 \left(-\frac{v_x}{4000}\right) + 3 \times 10^3(0) + v_x = 0$	
		$v_x = 8 \text{ V} = V_{\text{oc}}$	
		$R_{TH} = \frac{V_{\text{oc}}}{I_{\text{sc}}} = \frac{8}{0.8 \times 10^{-3}} = 10 \text{ k}\Omega$	
		2M	
		State and prove maximum power transfer theorem for network with reactive components. Statement – 1M Proof- 3M	[4]
	c) /	Apply superposition theorem to the following network and find the current through 4.7 K resistor that is I _{AB}	[4]

D:\Auto, my C'-\Autonomous - move\Formats-fromat of qu

