U218-134 (T1)

G.R. No.

OCTOBER 2018/IN-SEM (T1) S. Y. B. TECH. (E&TC) (SEMESTER - I)

COURSE NAME:SEMICONDUCTOR DEVICES & CIRCUITS

COURSE CODE: ETUA21174		
(PATTERN 2017)		
Time:[1 Hour] [Max. Marks: 30		
(*) Instructions to candidates:		
1) Answer Q.1 OR Q.2, Q.3 OR Q.4 2) Figures to the right indicate full marks. 3) Use of scientific calculator is allowed 4) Use suitable data where ever required		
Q1 a)	For voltage divider biasing circuit using silicon BJT with V_{CC} =12 V, R_1 =40K Ω , R_2 =5K Ω , R_C =5 K Ω and R_E =1K Ω and β =60. Calculate I_B , I_C and V_{CE} .	[6]
b)	Explain the need of bias stabilization in BJT amplifier circuit. Derive the expression for stability factor S for voltage divider biasing circuit for CE amplifier.	[6]
c)	Draw h parameter model of CE amplifier and state the significance of each parameter.	[4]
	OR	
Q2 a)	Compare CE, CB and CC amplifier with respect to performance parameters.	[6]
b)	Determine the operating point parameters such as $I_{BQ},~I_{CQ}$ and $V_{CEQ},$ if $V_{CC}{=}12$ V, $R_1{=}8K\Omega,~R_2{=}4K\Omega,~R_C{=}1K\Omega,~R_C{=}1K\Omega$ and $\beta{=}50.Assume~V_{BE}{=}0.7$ V. Also draw DC load line.	[6]
c)	What is meant by thermal runaway? Explain in detail.	[4]
Q3 a)	Self-biased n-channel JFET CS amplifier with bypass capacitor shown in figure 3a has following specifications: $V_{DD}\!=\!20V,$ $R_D\!=\!3.3K\Omega,R_G\!=\!1M\Omega,$ Rs=500 $\Omega,$ $I_{DSS}\!=\!16$ mA, $V_p\!=\!$ -8V, $V_{GS}\!=\!$ -4Vand $r_d\!=\!50K\Omega.$ Calculate Av, Ri and Ro.	[6]

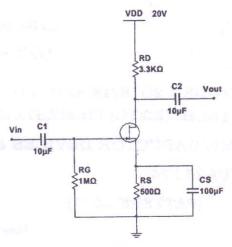


Fig. 3a

- b) For a n-channel JFET the data is as follows: [4] I_{DSS} =12 mA, V_p = -6V,Calculate the value of transconductance (g_m) and drain current I_D for V_{GS} = -2V.
- c) Draw neat drain characteristic and transfer characteristic for n- [4] channel JFET.

OR

Self-bias circuit using n channel JFET has following parameters: [6] $V_{DD}=18V,\ R_D=4.7K\Omega,\ R_S=1.5K\Omega,\ R_G=1M\Omega,\ V_p=-4V,\ I_{DSS}=8\ mA.$ Determine operating point parameters such as $V_{DSQ},\ V_{GSQ}$ and I_{DQ} .

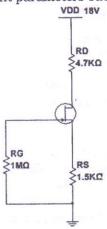


Fig. 4a

- b) With the help of ac equivalent circuit, derive the expressions for [4] input impedance, output impedance and voltage gain for CS amplifier with bypassed Rs.
- Justify the following statements:j JFET is a voltage controlled device.

ii) The input resistance of JFET is higher than BJT.

[4]