Marking Scheme U 218~ 14 é: CTL)

Q 1) a) Six steps of problem solving — Each step carry one mark. 6]

b) To addition of digits. _ 6]
Flow chart — 3 marks
Algorithm — 3 marks

c) Definition of problem - 2mark

ways to solve problem — 2marks [4]
OR

Q2) a) Different strategies for algorithm design — explanation with example |
6]

b) Write output of following functions (6]
Sign(0) O
Abs (-8) 8
String(-345.88) “-345.88”
Max (5,7,8,9) 9
Mid(s,3,2) ea

Right(s,3) ater

where s=theater
c) Need of function — at least four points each carry 1 mark. [4]
Q3) a) List down major types of module and explain their function with example

List of types of module — 2 marks
Function with example — 4 marks (6]
b) Correct decision table carries four marks (4]

c¢) Case structure explanation with flowchart 2 marks
example — 2 marks (4]
OR

Q4) a) Explain three decision logic structure with example (6]
Explanation with example.
b) In a multiplex the charges for a movie varies according to the age of the
persons. Using the positive logic, develop a solution to print the ticket changes
given the age of person. (4]

Solution in the form of flowchart or algorithm

c) call by value 2 marks (4]
call by reference 2 marks

| oy

U218-14 L (TL)

Solution
a The six steps of problem solving include the following (6]
1. Identify the problem: What is the problem that needs to be solved?
2. Understand the problem: Are there considerations that need to be
taken into account?
3. Identify alternative ways to solve the problem: There may be multiple
solutions to the problem. Write down all possible solutions, and at this
point, don’t rule anything out.
4. Select the best way to solve the problem from the list of alternative
solutions: Factors involved in selecting the best solution include
efficiency, schedule, cost, available resources, or the need for a long-term
solution. '
5. List instructions that enable you to solve the problem using the
selected solution: When solving a problem with computers, this can
include pseudocode, or a combination of English and code. '
6. Evaluate the solution: Determine if the solution solves the problem. If
not, return to identifying and understanding the problem.

b) Draw a flowchart and write an algorithm to find addition of digits. [6]

Flowchart
START
SUM=0 |
L 4
READ N
%
NEQ? FASLE—
TRUF
BEM=H%1 |
52.?.".1:§Ul‘.!+R]
S i
B
L N0
" PRITSUM
]
END
Algorithm
Step 1: Input N

Step 2: Sum=20

Step 3: While (N = 0)
Rem =N % 10,

Sum = Sum + Rem;

N=N/10;

Step 4: Print Sum

c) What is meant by problem? What are the ways to solve problem (4]
A problem can present itself in many forms. Examples of problems are as
follows: '
Question: What movie should we see?

Need to do something: Generate the monthly payroll.

Obstacle to progress: A part is missing that is causing work to halt on a
project.

Status of a process: What is the status of the project?

What-if simulation: How much money needs to be deducted from each
pay check to save for a down payment on a car?

Evaluation of a solution to another problem: Should traveling be done by
train or car?

Lack of information: How much money is left on the mortgage?

Undesirable state: A person has gone into debt.

Lack of control: A company has decided to downsize.

There are many ways in which a problem can be solved. The following are some

of the possibilities:

Algorithm: An algorithm is a series of steps used to arrive at an outcome
that represents the best answer to a problem. It is a specification of a
behavioral process. An algorithm is a finite set of instructions that govern
a behavior step by step, such as the manipulation of data. Problems that
require algorithms are often the problems that computers solve best.

Heuristic solutions: Heuristic solutions involve the use of human

ingenuity and reasoning. They are based on learning through experience.

Passing of time: Some problems are solved simply by the passing of time.

An undesirable state may change, or it may no longer be a problem.

Gaining resources: The solution to a problem may be more resources—such as

more money, time, or people ‘

Q2)

OR
a) Explain different strategies for algorithm design (6]

Strategies to solve the problem: brute force, greedy, divide and conquer,
and backtracking.

Brute Force

The brute force method of algorithm design is intended to bring into
mind hammering a screw into a board of wood. The solution may not be
elegant or efficient, but it will work. Generally, this involves considering
every aspect of every element of an array, regardless of whether each
element is important. It is an exhaustive, programmatic consideration of
everything, which takes time. Generally, brute force methods are
inefficient but still serviceable in many situations.

Greedy

Greedy algorithms involve considering the largest portion of the problem
set first. For example, if the problem considers how to pack a set of items
into a bag or a box, the greedy method would put the largest item in first,
followed by the second largest, and so forth.

The greedy method will occasionally find an efficient method; however,

more often than not, the solution will be similar to a brute force method.

Divide & Conquer

Suppose that a problem involved shuffling a deck of cards. It could be
determined that a deck of cards is shuffled if each half of the deck is

shuffled and randomly recombined. Due to the fact each half could be

considered a deck, what occurs is a recursive solution. The only
component left to define islthe base case, which would say that the
dividing of decks stops when the deck only consists of one card.

« Afterwards, each subdeck could be randomly combined to reproduce the
larger deck. This could be continued until the full deck is shuffled. This
method is called divide and conquer, when the algorithm seeks to divide
the problem into smaller problems which are, in turn, solved in the same
manner.

Back Tracking

A method often called backtracking is one other possibility toward finding

an efficient solution by starting with the solution and finding the problem.

If an algorithm can be developed that takes an appropriate solution and

slowly takes parts of it away until it comes to the problem and the algorithm

can be reversed, it is sometimes possible to determine an efficient solution
to a problem.
b) Write output of following functions (6]

Sign(0) : 0

‘Abs (-8) : 8
String(-345.88) : “-345.88”
Max (5,7,8,9) : 9
Mid(S,3,2) ea

Right(s,3) ater

L e o

where s=theater

c) What is the need of function? | [4]

Modularize a program
Divide and conquer
Manageable program development

Software reusability

Q3)

Use existing functions as building blocks form new programs

Abstraction-hide internal details (library functidns)

Avoid code repetition

a) List down major types of module and explain their function with

example. (6]

Types of modules

The control module: It shows the overall flow of the data through
the program. All other modules are subordinate to it.
The initialization modules: Processes instructions that are
executed only once during the progfam, and only at the beginning.
These instructions include opening files and setting the beginning
values of variables used in processing.
The Process modules: may be processed only once, or they may be
part of a loop, which is processed more than one during the
solution. There are several kind of Process modules

= Calculation modules

= Print modules

. Read and data validation modules
Wrapup modules: Process all instructions that are executed only
once during the program and only at the end. These instructions
include closing files and printing totals, among others
Modules in an object-oriented program may include event modules

such as mouse down, mouse up, key entry, & so on

b) Draw a decision table for the following set of conditions for gross

income tax and rate:

1) Gross <= 5,000 tax rate 5% 2) income between 5,000 - 10,000 tax rate 8%
3) income between 10,000 - 15,000 tax rate 10% 4) Gross > 15,000 tax rate
15% (4]

Decision Table ‘

Solution ->|5% |8% |10% |15%

Rate

Condition

Gross <= 5,000 | x

income between X

5,000 - 10,000

income between X

10,000 - 15,000

Gross > 15,000 X

c) Explain case structure with flowchart and example (4]
® [s similar to a series of If/Then/Else statements.
® Positive Logic
= Syntax:
Select Case testvalue
Case valuel
statement group 1
Case value2
statement group 2

End Select
!
Case/

Tre

v

\ 4

Case a action

Case b action

Case Else action y

Case Example

Select Case Grade

Case 90..100

LetterGrade = “A”
Case 80..89.9

LetterGrade = “B”
Case 70..79.9

LetterGrade = “C”
Case 60..69.9

LetterGrade = “D”
Else

LetterGrade = “F”
End Select

OR
Q4) a) Explain three decision logic structure with example (6]
| |

Straight-through Logic
= All decisions are processed sequentially, one after another.
* Least efficient, but most thorough
= Positive Logic
* Processing flow continues through the module instead of
processing succeeding decisions, once the result is True.
= Negative Logic
» Flow is based on result being False.
m Nested decisions use Positive or Negative, but not Straight-through.

~ Straight-through Logic
! = All conditions are tested.
® Least efficient, but most exhaustive.

v
A

A 4
A

Positive Logic:
® Uses If/Then/Else
instructions
= Continues
processing
- based on
True

results

T

Grade >= 90 T
| F
Grade m} = "A"

Fl T
LtrG = LtrG
"Other"” L 4

l

O

Negative Logic:
= Executes process
based on
False

® Processes another decision when the result is True

¢
ade <
F Gry?

LtrG Grade < 80

- HAH
LtrG LtrG =
= "Other"

b) Using positive logic, solve the following set of conditions to calculate

hotel bill:

1) Sales of eatables up to 100 Rs., 11% discount
2) Sales of eatables up to 1000 Rs., 22% discount
3) Sales of eatables up to 10000 Rs., 33% discount
As per attached sheet

c) What are the parameter passing techniques?

Call by Value

Calling a function with parameters passed as values
void fun(int a)

int a=10;
fun(a);

Here fun (a) is a call by value.

1
s

[4]

(4]

Any modification done with in the function is local to it and will not be effected

outside the function

Example program - Call by value

#include<stdio.h>
void main()

{
int a=10;
printf(“%d”,a);
fun(a);
printf(“%d”,a);

}

void fun(int x)

{
printf(“%d”,x)
xXt+;
printf(“%d”,x);

}

Call by reference

Calling a function by passing pointers as parameters (address of variables is

passed instead of variables)
void lun(int *x)

int a=1;
fun(&a);

J
Any modification done to variable a will effect outside the function also

1

. Example Program - Call by reference
‘#include<stdio.h>

void main()

{
int a=10;
printf(“%d”,a); a=10
fun(&a);
printf(“%d”, a); a=11
}
void fun(int *x)
{
printf(“%d”,x) x=14)
X++;
printf(“%d” x); x=11

How chen b

Alaoh}hm
T { calen <=1 og
DTSCOM: pr/°
e,
D’]‘S(O LN‘-’{_ = Ca@ 7/‘5
Qe 7
el en ZleDO 0% sodwér:(c',cwo
215 (0 vt — 23"
‘_—'_‘—'—-—.___,
\,.

