	G.R.	No.				Maria .		
--	------	-----	--	--	--	---------	--	--

\$	OCTOBER 2018/ IN-SEM (T2) S. Y. B. TECH. (COMPUTER ENGINEERING) (S	U218-125(T2 SEMESTER - I)			
CO	URSE NAME: DIGITAL SYSTEMS AND LOGIC	DESIGN			
CO	URSE CODE: CSUA21175				
	(PATTERN 2017)				
Time	[M	fax. Marks: 30]			
1) 2) 3)	tructions to candidates: Answer Q.1 OR Q.2 and Q.3 OR Q.4. Figures to the right indicate full marks. Use of scientific calculator is allowed Use suitable data wherever required				
Q 1)	a) Design a 3-bit synchronous counter using J-K flip-flops	s. [6]			
	b) Conversion of S-R flip-flop to J-K flip-flop.				
	c) Design a 3 bit ring counter and twisted ring counter	[4]			
	OR				
Q2)	a) Design a divide by 96(MOD-96) counter using 7490 ICs	. [6]			
	b) Design a moore machine for a sequence 1110.				
	c) Design a Master-Slave Flip-Flop using J-K flip-flop.	[4]			

Q3) a) Design a full adder circuit using PLA having three inputs, eight product

terms, and two outputs.

[6]

b) Implement a PLA for the given table

[4]

PLA Program Table									
the search	ny mald		Inputs			Outputs			
Term	Term#	A	B	C	F_1	F_2			
$A\bar{B}$	1	1	0	0-0	1	o LEID			
AC	2	1	oties lin	1	1	1			
BC	3	4	1	1		1			
$\bar{A}B\bar{C}$	4	0	1	0	1				
					T	C			

c) Draw structural architecture of PLA & PAL.

[4]

OR

Q4) a) Implement
$$f1(x2, x1) = \sum m(0,3)$$
, $f2(x2, x1) = \overline{x2+x1}$, and $f3(x2, x1) = \prod m(1)$ with a 4 X 3 ROM.

- b) What are types of PLD's? Draw structural diagram for any 3. [4]
- c) Design ROM as PLD for 4 X 2 ROM. [4]