G.R. No.

Paper Code - U218-131 (T2)

OCTOBER 2018/ IN-SEM (T2)

S. Y. B. TECH. (E & TC ENGINEERING) (SEMESTER - I)

COURSE NAME: Engineering Mathematics III

COURSE CODE: ETUA21171

(PATTERN 2017)

Time: [1Hour]

[Max. Marks: 30]

(*) Instructions to candidates:

- 1) Answer Q.1 OR Q.2 and Q.3 OR Q.4.
- Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed
- 4) Use suitable data where ever required

Q.1)

a) The first four moments of a distribution about the value 4 are -1.5, 17, -30 and 108. Calculate the first four moments about the mean and comment upon the skewness and kurtosis. Also find mean and standard deviation.

[6 marks]

b) Find correlation coefficient between x and y for the following data

X	1	3	4	6	8	9	11	14
Y	1	2	4	4 .	5	7	8	9

[6 marks]

c) A random sample of 200 bolts is drawn from a population which represents the size of bolts. If a sample is distributed normally with a mean 3.15 cm and standard deviation 0.025 cm, find expected number of bolts whose size falls between 3.12 cm and 3.2 cm. (Given: For z=1.2 area A=0.3849, z=2 area A=0.4772). [4 marks]

OR

(0.2)

a) For the following distribution find first four moments about the mean .Also find $\beta_1 & \beta_2$

X	2	2.5	3	3.5	4	4.5	5
F	4	36	60	90	70	40	10

[6 marks]

- b) The regression line of y on x is 4x-5y+33=0 and regression line of x on y is 20x-9y=107. The value of variance of x is 9. Find
- 1) The mean value x and y 2) The correlation coefficient between x and y.
- 3) The standard deviation of y.

[6 marks]

c) In a certain factory turning out razor blades there is a small chance of 1/500 for any blade to be defective. The blades are supplied in a packet of 10. Calculate approximate number of packets containing no defective and 2 defective blades in a consignment of 10,000 packets.

[4 marks]

Q.3)

a)If the vector field $\bar{F} = (x + 2y + az)\vec{i} + (bx - 3y - z)\vec{j} + (4x + cy + 2z)\vec{k}$ is irrotational, find a, b, c and hence find corresponding scalar field ϕ such that $\bar{F} = \nabla \emptyset$

b) Find directional derivative of $xy^2 + yz^3$ at (2,-1,1) along the line 2(x-2) = (y+1) = (z-1)

[4 marks]

c) Show that $\nabla^4(r^2 \log r) = \frac{6}{r^2}$

[4 marks]

OR

Q.4)

a) Find the constants a & b, so that the surface $ax^2 - byz = (a + 2)x$ will be orthogonal to the surface $4x^2y + z^3 = 4$ at the point (1,-1,2) [6 marks]

b) Show that $\nabla \left(\frac{\bar{a}.\bar{r}}{r^n} \right) = \frac{\bar{a}}{r^n} - \frac{n(\bar{a}.\bar{r})}{r^{n+2}}\bar{r}$

[4 marks]

c) In what direction, directional derivative of x^2yz^3 is maximum from the point (2,1,-1). Also find magnitude of this maximum.

[4 marks]

##end##