Marking scheme & solution

Total No. of Questions – [04]

Total No. of Printed Pages 04

G.R. No. Paper Code - U218-136 (T2)

OCTOBER 2018/IN-SEM (T2) S. Y. B. TECH. (E & TC) (SEMESTER - I)

COURSE NAME: Network Theory

COURSE CODE: ETUA21176

(PATTERN 2017)

Time: [1Hour]

[Max. Marks: 30]

- (*) Instructions to candidates:
- 1) Answer Q.1 OR Q.2 and Q.3 OR Q.4.
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed
- 4) Use suitable data wherever required
- Q.1) a) A parallel resonant circuit has an inductor 0.1 H with quality factor 5. Determine the capacitance and the coil resistance at resonant frequency 100 Hz. Also find the impedance at resonance.

[6 marks]

$$Q_{ar} = \frac{\omega_{ar\,L}}{R_{coil}} \quad R_{coil} = 12.56\Omega \ \textbf{-2M}$$

$$f_{ar} = \frac{1}{2\pi} \sqrt{\frac{1}{\textit{LC}} - \frac{R_{coil}^2}{L^2}}$$

$$\textbf{C} = \textbf{24.35} \; \mu \textbf{F} \qquad \textbf{-2M}$$

$$Z_{ar} = \frac{L}{CR_{coil}} = 1.65 M\Omega - 2M$$

b) A circuit consisting of a coil of inductance 0.4H with internal resistance 10 Ω , is connected in series with a capacitor. The circuit is driven by 230V, 50Hz AC source. Determine the capacitance, voltage across inductor and current in the circuit at resonance. [6 marks]

 f_o =50 Hz Hence C_o = 25.33 μF -2 M Q_0 =12.56 V_L = jQ_0V = j2.89KV= $2.89 \angle 90 \ KV$ -2M I_0 = V/R= 23A -2M

c) An inductor of 0.05H and internal resistance 50Ω is connected in series with $0.02\mu F$ capacitor. Determine Quality factor and bandwidth [4 marks]

Q.3) a) In the network shown below the switch is open for long time. At t=0 the switch is closed. Determine the voltage across capacitor. [6 marks]

$$V_c(0)=5 V - 2M$$

 $V_c(t) = 1 + 4e^{-10t} V - 4M$

b) Explain the concept and physical significance of complex frequency [4 marks]

Concept and significance of complex frequency S for all three cases - 4 M

c) In the following circuit the switch is moved from position 1 to 2 at t=0. Prior to this the steady state was reached. Determine i(t) after switching . [4 marks]

$$i_L(0)=25A - 1M$$
 $i_L(t) = 50 - 25e^{-200t} A - 3M$

OR

Q.4) The switch is closed at t=0. Find the voltage across capacitor. Draw its graph. [6 marks]

$$V_c(t) = 5 - 5e^{-0.1t}V$$
 -4M graph 2M

Q.3) a) In the network shown below the switch is open for long time. At t=0 the switch is closed. Determine the voltage across capacitor. [6 marks]

$$V_c(0) = 5 \text{ V} - 2\text{M}$$

 $V_c(t) = 1 + 4e^{-10t} \text{ V} - 4\text{M}$

b) Explain the concept and physical significance of complex frequency [4 marks]

Concept and significance of complex frequency S for all three cases - 4 M

c) In the following circuit the switch is moved from position 1 to 2 at t=0. Prior to this the steady state was reached. Determine i(t) after switching . [4 marks]

$$i_L(0)=25A-1M$$

$$i_L(t)=50-25e^{-200t}A-3M$$

OR

Q.4) The switch is closed at t=0. Find the voltage across capacitor. Draw its graph. [6 marks]

$$V_c(t) = 5 - 5e^{-0.1t} V$$
 -4M graph 2M

b) Determine Laplace transform for the following functions 1) $\cos(\omega t) = e^{-at}$ [4 marks]

$$L\{\cos(\omega t)\} = \frac{s}{s^2 + \omega^2} -2M$$

$$L\{e^{-at}\} = \frac{1}{s+a} - 2M$$

c) In the following circuit the switch is moved from position 1 to 2 at t=0. Prior to this the steady state was reached. Determine i(t) after switching . [4 marks]

$$i_L(0)=2.5A-1M$$

$$i_L(t) = 2.5e^{-3t} A$$
 -3M