OCTOBER 2018/ IN-SEM (T2)

S. Y. B. TECH. (MECHANICAL ENGINEERING) (SEMESTER - I)

COURSE NAME: Thermodynamics

COURSE CODE: MEUA21175

(PATTERN 2017)

Marking Scheme

- Q.1) a) Change in entropy 2 marks

 Work done 2 marks

 Correct formula -1 mark each
 - b) P-v/T-s diagram 2 marksDerivation 4 marks
 - c) Definition 2 marks each
- Q.2) a) Heat supplied 2 marks

 Entropy change 2 marks

 Correct formula -1 mark each
 - b) Diagram 2 marks each
 - c) P-v/T-s diagram 2 marks
 Derivation 2 marks
- Q.3) a) Mass of steam 2 marks

 Mass of water 2 marks

 Correct formula -1 mark each
 - b) Definitions 1 marks each

- c) P-v & T-s diagram 2 marks
 Explanation 2 marks
- Q.4) a) Volume of tank 2 marks

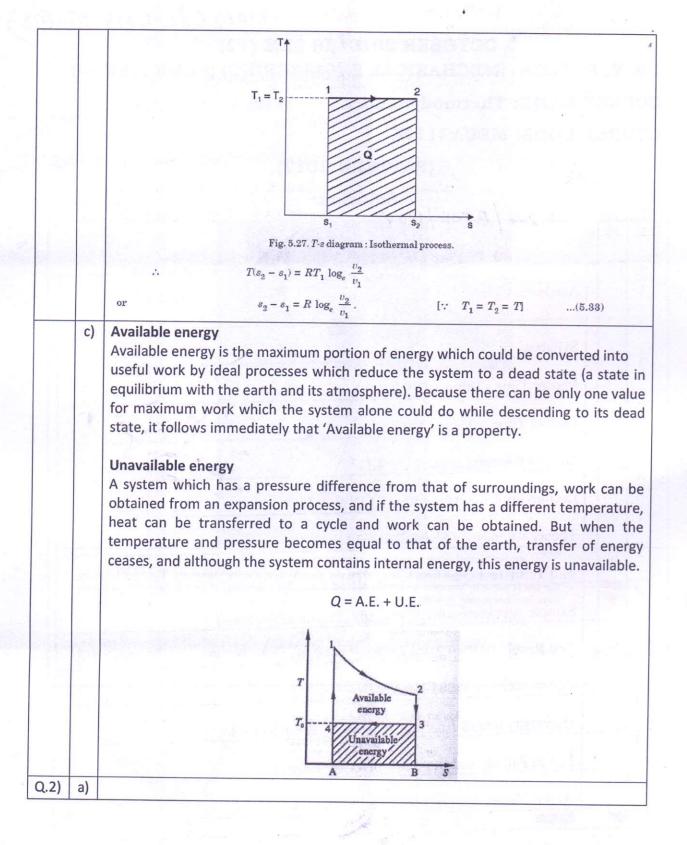
 Moisture content 2 marks

 Correct formula -1 mark each
 - b) Definition 1 markAdvantages 3 marks
 - c) Diagram 2 marks Derivation - 2 marks

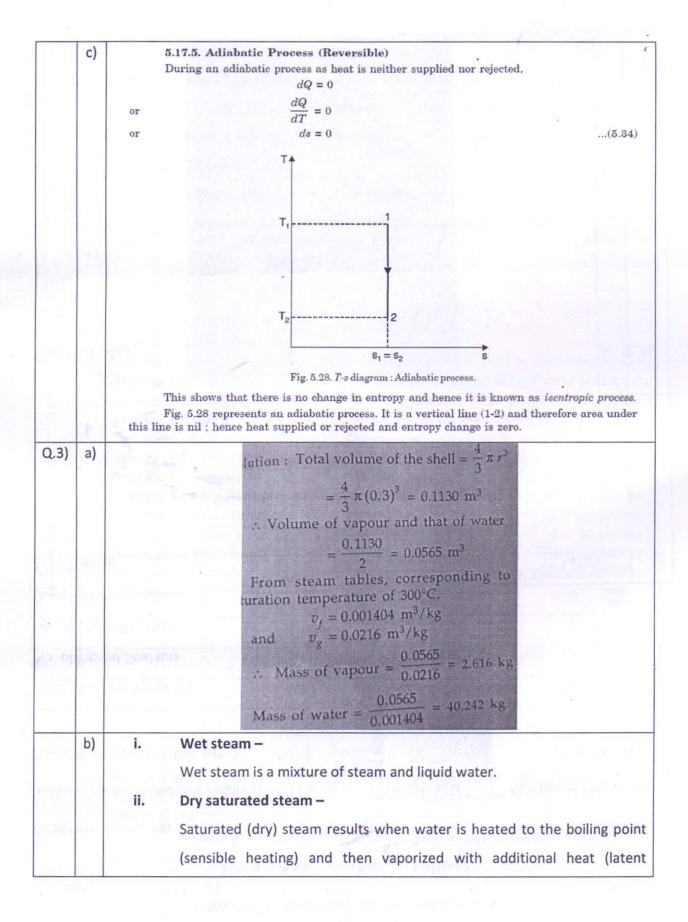
Paper Code-0218-155(72)

OCTOBER 2018/ IN-SEM (T2)

S. Y. B. TECH. (MECHANICAL ENGINEERING) (SEMESTER - I)


COURSE NAME: Thermodynamics

COURSE CODE: MEUA21175


(PATTERN 2017)

Solution

Q.1)	a)	$m = \frac{p_1 v_1}{RT_1}$
		$= \frac{1.5 \times 10^5 \times 0.15}{0.295 \times 10^3 \times 300} = 0.254 \text{ kg}$
		$v_2 = v_1 \left(\frac{p_1}{p_2}\right)^n$
		$= 0.15 \left(\frac{1.5}{15}\right)^{1/1.25} = 0.0238 \text{ m}^3.$
Link.	15.5	$s_2 - s_1 = mc_p \log_e \frac{v_2}{v_1} + mc_p \log_e \frac{p_2}{p_1}$
		$= 0.254 \times 1.04 \log_e \frac{0.0238}{0.15}$
		+ 0.254×0.745log _e 15 1.5
		= -0.4863 + 0.4357 $= 0.0506 kJ/kg$
		$W_{1-2} = \frac{p_1 v_1 - p_2 v_2}{n-1}$
		$= \frac{1.5 \times 10^5 \times 0.15 - 15 \times 10^5 \times 0.0238}{1.25 - 1}$ $= -52800 \text{ J} = -52.80 \text{ kJ}$
	b)	An isothermal expansion 1-2 at constant temperature T is shown in Fig. 5.27. Entropy changes from s_1 to s_2 when gas absorbs heat during expansion. The heat taken by the gas is given by the area under the line 1-2 which also represents the work done during expan-
		sion. In other words, $Q=W$. But $Q=\int_{s_1}^{s_2}Tds=T(s_2-s_1)$
	-	and $W = p_1 v_1 \log_e \frac{v_2}{v_1} = RT_1 \log_e \frac{v_2}{v_2}$ per kg of gas $[\because p_1 v_1 = RT_1]$

 $m = \frac{p_1 v_1}{RT_1} = \frac{1 \times 10^5 \times 0,005}{296.93 \times 290}$ $= 5.806 \times 10^{-3} \text{ kg}$ $c_v = \frac{R}{\gamma - 1} = \frac{296.93}{1.4 - 1}$ = 742.32 J/kg KHeat supplied = $mc_v(T_2 - T_1)$ $= 5.806 \times 10^{-3} \times 742.32 \text{ (360 - 290)}$ = 301.694 = 0.302 kJChange in entropy, $(S_2 - S_1) = mc_v \log_x \frac{T_2}{T_1}$ $= 5.806 \times 10^{-3} \times 742.32 \log_e \frac{360}{290}$ = 0.9319 J/kg Kb) $T_1 = T_0$ = 0.9319 J/kg Ki. isochoric ii. Isobaric iii. Isothermal

		heating).
		iii. Superheated steam –
		Superheated steam is created by further heating wet or saturated steam
		beyond the saturated steam point.
		iv. Saturated liquid -
		a liquid whose temperature and pressure are such that any decrease in
		pressure without change in temperature causes it to boil.
	c)	Turbins Turbins W ₁ Condenser Cooling (a Vi le) Peed pump Turbins O _A a Quant Organisation Organisation
		Process 1-2: Reversible adiabatic expansion in the turbine (or steam engine). $W_T = h_1 - h_2$ Process 2-3: Constant-pressure transfer of heat in the condenser. $Q_2 = h_2 - h_3$ Process 3-4: Reversible adiabatic pumping process in the feed pump. $W_P = h_4 - h_3$ Process 4-1: Constant-pressure transfer of heat in the boiler.
		$Q_1 = h_1 - h_4$
Q.4)	a)	Solution: At 20°C; $v_f = 0.001002 \text{ m}^3/\text{kg}$; $v_g = 57.79 \text{ m}^3/\text{kg}$ That gives $V_f = m_f v_f$ $= 100 \times 0.001002$ $= 0.1002 \text{ m}^3$ $V_g = m_g v_g$ $= 5 \times 57.79 = 288.95 \text{ m}^3$ $\therefore \text{ Total volume } V = V_f + V_g$ $= 0.1002 + 288.95 = 289 \text{ m}^3$ Moisture content refers to wetness fraction which is given by $x = \frac{m_f}{m_f + m_g}$ $= \frac{100}{100 + 5} = 0.952 \text{ or } 95.2 \text{ %}$
	b)	Superheated steam is a steam at a temperature higher than its vaporization (boiling) point at the absolute pressure where the temperature is measured. Advantages 1. The main advantages of using a superheater are reduced fuel and water consumption

M

e laci	 Superheated steam has a high thermal capacity per unit volume, offering extremely high thermal conductivity. Superheated steam has a lower density, so lowering the temperature does not revert it back to its original liquid state
c)	Process 1-2: Reversible adiabatic expansion in the turbine (or steam engine). $W_T = h_1 - h$. Process 2-3: Constant-pressure transfer of heat in the condenser. $Q_2 = h_2 - h_3$ Process 3-4: Reversible adiabatic pumping process in the feed pump. $W_P = \frac{1}{4} - h_3$
	Process 4-1: Constant-pressure transfer of heat in the boiler. $Q_1 = h_1 - h_4$ $\eta_{\text{Rankine}} = \frac{W_{\text{net}}}{Q_1} = \frac{W_T - W_P}{Q_1}$ $= \frac{h_1 - h_2}{Q_1}$