G.R. No.

Paper code-(U 219-134 (BE-FAFS)

DECEMBER 2019/ENDSEM - Backlog Exam

S. Y. B. TECH. (E&TC) (SEMESTER - I)

COURSE NAME: Semiconductor Devices & Circuits

COURSE CODE: ETUA21174

(PATTERN 2017)

Time: [2Hours]

[Max. Marks: 50]

(*) Instructions to candidates:

Answer Q.1, Q.2, Q.3, Q.4, Q.5 OR Q.6, Q.7 OR Q.8

Figures to the right indicate full marks. 2)

Use of scientific calculator is allowed

4) Use suitable data where ever required

Draw voltage divider biasing circuit and Derive the expression for stability factor for voltage divider biasing circuit.

[6 marks]

OR

b) Calculate the Q point values of IB, Ic and VCE for the voltage divider bias circuit, if V_{CC} =12 V, R_1 =8 $K\Omega$, R_2 =4 $K\Omega$, R_C =1 $K\Omega$ and $R_E=1$ K Ω . Assume silicon transistor with $\beta=50$.

[6 marks]

Q. 2)a) Draw the construction of n-channel JFET and explain its working in detail along with its characteristics.

[6 marks]

b) N-channel JFET common source amplifier with bypass capacitor has $R_G=1M\Omega$, $R_D=5K\Omega$, $R_S=1K\Omega$, $g_m=2mA/V$, $r_d=10K\Omega$, Determine A_v, R_i and R_o.

[6 marks]

Draw and explain the output characteristic and transfer Q. 3) a) characteristic of N channel E-MOSFET.

[6 marks]

OR

b) Explain following non-ideal effects for MOSFET.

i) Body effect

ii) Break down effect

[6 marks]

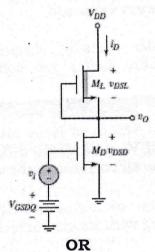
Q. 4) a) For CS amplifier with voltage divider biasing circuit using nchannel MOSFET has V_{DD} = 10V, R_1 =70 K Ω , R_2 = 27 K Ω , R_D = $5K\Omega$. Calculate the values of gm, and r_0 . Assume following data for MOSFET: V_T = 1.2V, K_n =0.48mA/ v^2 and λ =0.012A/V.

[4 marks]

b) For CS amplifier using MOSFET determine g_m , I_D and r_0 if $V_T = 1 \text{ V}$, $K_n = 0.8 \text{ mA/V}^2$, $\lambda = 0.01/\text{V}$, $V_{GSQ} = 3\text{V}$.

[4 marks]

Q. 5) a) Explain how n-channel MOSFET and p-channel MOSFET can be used as current sink and source respectively with the help of output I-V characteristics of both?


[6 marks]

b) Draw MOSFET as a practical switch model. Explain the significance of each component.

[4 marks]


c) Determine the small-signal voltage gain of the NMOS amplifier with depletion load. For the circuit shown in figure, assume transistor parameters of V_{TND} = +0.4 V, V_{TNL} = -0.8 V, K_{nD} = 2 mA/V², K_{nL} = 0.4 mA/V², λ_{D} = 0.01 V⁻¹, and λ_{L} = 0.02 V⁻¹ Assume the transistors are biased at I_{DQ} = 0.2 mA.

[4 marks]

Q. 6)a) The transconductance g_{m1} of the transistor M_1 in the circuit of figure is to be changed by changing the bias current such that the output resistance of the circuit is R_0 = 2 k Ω . Assume the bias voltage is V_{DD} = 3.3 V. Assume that all transistors are matched with parameters V_{TN} = 0.4 V, K_n = 0.20 mA/V², and λ = 0.01 V⁻¹. The drain current in M_1 is I_{D1} = I_{Bias} = 0.2 mA. (a) What are the required value of g_{m1} and new value of I_{Bias} ? (b) Using the results of part (a), what is the small-signal voltage gain?

[6 marks]

b) Sketch CMOS common-gate amplifier circuit and its small-signal equivalent circuit. Write expression for small-signal voltage gain and output resistance.

[4 marks]

c) Sketch NMOS source follower amplifier circuit and its small-signal equivalent circuit. Write expression for small-signal voltage gain and output resistance

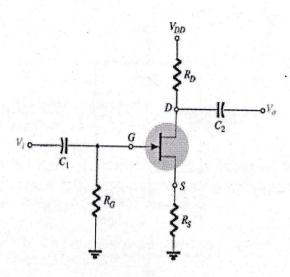
[4 marks]

- Q. 7) a) Draw block schematic of following feedback topologies:
 - i) Voltage series feedback topology
 - ii) Voltage shunt feedback topology
 - iii) Current series feedback topology

[6 marks]

b) A Colpitt Oscillator circuit having two capacitors of 24nF and 240nF respectively are connected in parallel with an inductor of 10mH. Determine the frequency of oscillations of the circuit.

[4 marks]


c) Explain Hartley oscillator with neat circuit diagram. Also write it's cut off frequency expression.

[4 marks]

OR

Q. 8) a) For a given current series feedback amplifier, determine G_{mf} , A_{vf} , R_{if} , R'_{of} if R_s =1K Ω , R_D = 3.9K Ω , R_G =1M Ω , g_m =2mA/V and r_o =25K Ω .

[6 marks]

b) Draw neat circuit diagram of Colpitt oscillator and explain it's working in detail.

[4 marks]

c) Draw circuit diagram and AC equivalent of voltage series feedback amplifier and write it's final expression for ac parameters. [4 marks]

4/4