G.R. No. Paper Code - P119-111 (ESE) DECEMBER 2019/ENDSEM F. Y. M. TECH. (STRUCTURES) (SEMESTER - I) COURSE NAME: THEORY OF ELASTICITY COURSE CODE: CVPB11181 | COURSE CODE. CVFB11101 | | | |--|---------------------------|--------------------| | (PATTERN 2018: R1) | | | | Time: [3 Hour] | [Max. Mark | s: 50] | | (*) Instructions to candidates: | | | | Answer Q.1, Q.2, Q.3, Q.4 OR Q.5, Q.6 OR Q.7, Q.8 OR Q.9 Figures to the right indicate full marks. Use of scientific calculator is allowed Use suitable data where ever required | | | | ose summore ever required | | | | Q.1) a) State the strain compatibility equations in cartesian coordinate systematics of the control cont | em. [3 ma | rks] | | b) State the equilibrium equations in cartesian coordinate system. | [3 ma | ırks] | | Q.2) a) State the stress strain relations for two-dimensional plain stress prof
OR | | arks] | | b) State the stress strain relations for two-dimensional plain strain prob | lems [3 ma | ırks] | | Q.3) a) Draw a neat sketch of stress components acting on an infinitesimall polar coordinate system. OR | [2 ma | arks] | | b) Express the stress components of polar coordinate system in terms o two-dimensional elasticity problem. | f stress function [2 ma | | | Q.4) a) Explain the significance of the theories of failure. | [6 ma | rks] | | Q.4) b) Derive the stress components σ_r , σ_θ and $\tau_{r\theta}$ in case of circular plan | te subjected to | uniform | | ensile stress of intensity σ_0 . | [8 mar | | |)5) a) Determine the constant | [14 ma | rks] | | Q.7) Prove that the sum of curvatures of middle surface at any point | in two perpe | endicular
axes. | | 0.8) Derive the Navier solution for an all round simply supported rectanging
informly distributed load. | ular plate subj
[14 ma | jected to | | OR OR | - 1 | | | 2.9) Derive the Navier solution for an all round simply supported rectanginusoidal load. | ular plate subj
[14 ma | |