Total No. of Printed Pages: 04

Total No. of Questions – [6]

ODAL		7
G.R. No.	paperiode: U239-132 (ESE	= 1
	- DODIELACIE (1) 29-1346000	~ /
	papercular of an i	\checkmark

1

DECEMBER 2019-20 ENDSEM S. Y. B.TECH. (E & TC) (SEMESTER –III) COURSE NAME: Probability and Statistics

COURSE CODE: ES21182ET

(PATTERN 2018)

Time: [2 Hours]

[Max. Marks: 50]

(*) Instructions to candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed.
- 4) Assume suitable data where ever required.

Q.1)	Att	empt any one	
	a)	The probability that India wins a cricket match against Australia is 2/5. If three matches are played between the two teams, what is the probability that i. India win at least one match ¹¹ . India win at most one match	[4]
	b)	In a class 10 boys and 5 girls, three students are selected random one after the other. Find the probability that	[4]
		i. first two are boys and third is girl	8
		ii.first and third is of same gender and third is of opposite gender	
Q.2)	Att	empt any one	
<u>×</u>	a)	A shipment of 8 similar microcomputers to a retail outlet	[4]

Q.2)	Attempt any one		
~ (a)	A shipment of 8 similar microcomputers to a retail outlet contains 3 that are defective. If a school makes a random purchase of 2 of these computers, find and sketch the probability distribution (pdf) for number of defective pieces. Also find and sketch cdf.	[4]
	b)	 A continuous random variable T is used to model number of days, t, and a mosquito survives after hatching. The CDF is given by F(t) = 1 - ²²⁵/_{(t+15)²}, t > 0 i. Find the probability that a randomly selected mosquito will die within 3 days of hatching. ¹¹ Given that mosquito survived for 3 days, find the probability that it will survive for at least 5 more days. 	[4]
	J		h.,

0.3)	Atte	Attempt any one				
	a)	1 1 1 1 1 inter continuous RVs With 10101 POL				
	b)	Consider the following joint distribution of X and Y	[6]			
		Y -2 -1 4 5 Sum				
		1 .1 .2 0 .3 .6				
		2 .2 .1 .1 0 .4				
		Sum .3 .3 .1 .3				
		Find COV (X,Y)				
	×					
Q.4)		empt any one 1. Calculate the skew and kurtosis of an Uniform	[6]			
	a)	distribution, distributed over an interval [0,1]				
			-			
	2. Busses arrive at a stop at 15 min. interval starting at 7AM. If a passenger arrives at the stop at a random time					
		that is uniformly distributed between 7 AM and 7:30 AM. Find	ď			
		probability that he waits i. <5min. ii. at least 12 min.				
940 101 10	b)	 b) 1. The time taken to assemble a car in a certain plant is a random variable having a normal distribution of 20 hours and a standard deviation of 2 hours. What is the probability that a car can be assembled at this plant in a period of time a) Less than 19.5 hours? b) between 20 and 22 hours? 				
 2. The service rate at a supermarket checkout is 6 customers per hour. If the service time is exponential, find the following probabilities. a) A service is completed in 5 min. b) A customer leaves the counter more than 10 minutes after arriving (Hint: Use CDF of exponential distribution : F(x) = 1-e^{x/\lambda}, x≥0 						

2/4

a)	 Ø is uniformly distributed over [0,2π] is wide sense stationary process ii. The random process X(t) = a cos(w_ct + Ø), where A is uniformly distributed between [2, 3] and w_c and Ø are constants. a. Sketch the ensemble of the random process. b. Justify whether it is stationary or non-stationary process 	[7] [6]
b)	 process ii. The random process X(t) = a cos(w_ct + Ø), where A is uniformly distributed between [2, 3] and w_c and Ø are constants. a. Sketch the ensemble of the random process. b. Justify whether it is stationary or non-stationary process i Consider the power signal x(t) with autocorrelation Rx(t)=200 sinc(200t). Find and plot. a. Power spectral density of input b. The process is passed through ideal LPF with cutoff 50 Hz. Find output power. For each of the following functions, state whether it can be a valid PSD? Give the justification 	
b)	 ii. The random process X(t) = a cos(w_ct + Ø), where A is uniformly distributed between [2, 3] and w_c and Ø are constants. a. Sketch the ensemble of the random process. b. Justify whether it is stationary or non-stationary process i Consider the power signal x(t) with autocorrelation Rx(t)=200 sinc(200t). Find and plot. a. Power spectral density of input b. The process is passed through ideal LPF with cutoff 50 Hz. Find output power. For each of the following functions, state whether it can be a valid PSD? Give the justification 	
b)	 uniformly distributed between [2, 3] and w_c and Ø are constants. a. Sketch the ensemble of the random process. b. Justify whether it is stationary or non-stationary process i Consider the power signal x(t) with autocorrelation Rx(t)=200 sinc(200t). Find and plot. a. Power spectral density of input b. The process is passed through ideal LPF with cutoff 50 Hz. Find output power. For each of the following functions, state whether it can be a valid PSD? Give the justification 	[7]
b)	 constants. a. Sketch the ensemble of the random process. b. Justify whether it is stationary or non-stationary process i Consider the power signal x(t) with autocorrelation Rx(τ)=200 sinc(200t). Find and plot. a. Power spectral density of input b. The process is passed through ideal LPF with cutoff 50 Hz. Find output power. For each of the following functions, state whether it can be a valid PSD? Give the justification 	[7]
b)	 a. Sketch the ensemble of the random process. b. Justify whether it is stationary or non-stationary process i Consider the power signal x(t) with autocorrelation Rx(τ)=200 sinc(200t). Find and plot. a. Power spectral density of input b. The process is passed through ideal LPF with cutoff 50 Hz. Find output power. For each of the following functions, state whether it can be a valid PSD? Give the justification 	[7]
b)	 b. Justify whether it is stationary or non-stationary process ¹ Consider the power signal x(t) with autocorrelation Rx(t)=200 sinc(200t). Find and plot. a. Power spectral density of input b. The process is passed through ideal LPF with cutoff 50 Hz. Find output power. For each of the following functions, state whether it can be a valid PSD? Give the justification 	[7]
b	 process i Consider the power signal x(t) with autocorrelation Rx(τ)=200 sinc(200t). Find and plot. a. Power spectral density of input b. The process is passed through ideal LPF with cutoff 50 Hz. Find output power. For each of the following functions, state whether it can be a valid PSD? Give the justification 	[7]
b	 i. Consider the power signal x(t) with autocorrelation Rx(t)=200 sinc(200t). Find and plot. a. Power spectral density of input b. The process is passed through ideal LPF with cutoff 50 Hz. Find output power. For each of the following functions, state whether it can be a valid PSD? Give the justification 	[7]
b	 sinc(200t). Find and plot. a. Power spectral density of input b. The process is passed through ideal LPF with cutoff 50 Hz. Find output power. For each of the following functions, state whether it can be a valid PSD? Give the justification 	[7]
	a. Power spectral density of inputb. The process is passed through ideal LPF with cutoff 50 Hz.Find output power.For each of the following functions, state whether it can be a valid PSD? Give the justification	- 7
	b. The process is passed through ideal LPF with cutoff 50 Hz.Find output power.For each of the following functions, state whether it can be a valid PSD? Give the justification	7
	Find output power. For each of the following functions, state whether it can be a valid PSD? Give the justification	т Т
• •	For each of the following functions, state whether it can be a valid PSD? Give the justification	Ť
**	valid PSD? Give the justification	
a i	valid PSD? Give the justification	
	ω^2 (b) $\frac{1}{1}$	
		[6]
	(a) $\frac{\omega^2 + 16}{\omega^2 - 16}$	
	(c) $\frac{\omega}{\omega^2 + 16}$ (d) $\delta(\omega) + \frac{1}{\omega^2 + 16}$	
	(c) $\frac{\omega}{\omega^2 + 16}$ (d) $\delta(\omega) + \frac{1}{\omega^2 + 16}$	
	(e) $\delta(\omega + \omega_0) - \delta(\omega - \omega_0)$ (f) $j[\delta(\omega + \omega_0) + \delta(\omega - \omega_0)]$	
	· · · · · ·	
	ttompt ony one	
	() 1. A doctor believes that the proportions of births in the	[7]
, a)	country on each day of the week are equal. A random sample	[[']
-		
	form 700 births in recent year is selected and the results are	8
	shown in the table below. At a significance level of 0.01, is	
	there enough evidence to support doctor's claim?	
	Day Sun Mon Tue Wed Thurs Fri Sat	
	Frequency 65 103 114 116 115 112 75	
	2. A bank teller serves customers in a queue one by one.	161
	Suppose that the service time Xi for customer i has mean =2	[6]
-	and var=1. Let Y be the total time spent serving 50 customers.	ъ
	Find P(90 <y <110)<="" td=""><td></td></y>	
b) 1. The values of x and their corresponding values of y are	[7]
	shown in the table below	

 ; x 0	1	2	3	4		
y 2	3	5	4	6		
 a) Find the I b) Estimate 2. The side effect 565 patients yie 0.05, is there end is independent of 	the value ts of a ne lds the res hough evid	of y wh w drug sults be lence to	en x = 1 are beir low. At conclu	.0. ng tested a signific	. A sample of cance level of	[6
Result	Dru	g1	5	Drug2		
Nausea	36	7		13	- 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12	
No nausea	254			262		