G.R. No. Paper (ode) - U359-134(ESE)

DECEMBER 2019/ENDSEM

T. Y. B. TECH. (E & Tc) (SEMESTER - I)

COURSE NAME: Electromagnetic Engineering

COURSE CODE: ETUA31174

(PATTERN 2017)

Time: [2 Hours]

[Max. Marks: **50**]

- (*) Instructions to candidates:
- 1) Answer Q.1, Q.2, Q.3, Q.4, Q.5 OR Q.6, Q.7 OR Q.8
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed
- 4) Use suitable data where ever required
- Q.1) a) Find constants a, b, c such that field V is irrotational and is given as $V=(x+2y+az)\mathbf{a_x}+(bx-3y-z)\mathbf{a_y}+(4x+cy+2z)\mathbf{a_z} \qquad \qquad [6 \text{ marks}]$

OR

- b) a) Find (scalar) distance between following points
 - i) A(2, $\pi/6$,0) and B(1, π , 2) ii) P(1, $\pi/4$, 0) and Q(1,3 $\pi/4$, π) [6 marks]
- Q.2) a) The spherical surfaces r=1m, 2m, 3m carry surface charge densities of 20 nC/m², -9 nC/m², 2nC/m² respectively, i) How much flux leaves surface with r=5m ii) Find **D** at P(1,-1,2) [6 marks]

OR

- b) Derive Electric field intensity ${\bf E}$ due to infinite long conductor having uniform charge density ρ_l [6 marks]
- Q.3) a) Derive Magnetic field intensity on axis of a circular loop carrying current I. [6 marks]

OR

- b) An infinite long straight filament carrying current of 3 A is placed along z-axis. Calculate Magnetic field intensity at point P (1,2,1) [6 marks]
- Q.4) a) Derive Boundary conditions for electric field crossing boundary between two different dielectrics. [4 marks]

OR

b) Determine whether given potential field satisfies Laplace's equation. $V = x^2-y^2+z^2$ [4 marks]

Q. 5) a) Moist soil is having conductivity of 10^{-3} S/m and ϵ_r =2.5. If elect	ric field
intensity $\mathbf{E}=4.5\times10^{-6}\sin(8\times10^9)$ t, find conduction current density a	nd
displacement current density.	[6 marks
b) Write down Maxwell's equations in point form and integral form	for time
varying fields.	[4 marks
c) Write the following time harmonic field as phasors	
$\mathbf{H} = 4 \sin \omega t \mathbf{a_x} + 3 \cos \omega t \mathbf{a_y}$	[4 marks]
OR	
Q.6) a) Derive expression for displacement current and hence correspond	ding
Maxwell's equation for time varying field in point form.	[6 marks]
b) In a non magnetic material (ε_r =0, μ = μ 0, σ =0), given H = 30 cos($2\pi x$	108t-бх) а v
mA/m. Find Poynting vector P.	[4 marks]
c) State and explain Poynting theorem.	[4 marks]
Q.7) a) An electric field E in free space is given as $\mathbf{E} = 800 \cos(10^8 t - \beta y) \mathbf{a}_z$	V/m.
Find β , λ , H at point P(0.1,1.5,0.4) at 8 nsec	[6 marks]
b) Derive following parameters for plane waves in good conductors-	
α, β, u, η	[4 marks]
c) Derive wave equation for free space in terms of E .	[4 marks]
OR	
Q.8) a) The electromagnetic wave propagates in free space. Its fields are	given by
$\mathbf{E} = 30 \pi e^{j(10^8 t + \beta z)} \mathbf{a_x} \text{ V/m. } \mathbf{H} = \text{H}_0 e^{j(10^8 t + \beta z)} \mathbf{a_y} \text{ V/m. } \text{Find H}_0 \text{ and } \beta$	
b) In free space $\mathbf{E} = 20 \cos(\omega t - 50x) \mathbf{a_y} V/m$ calculate $\mathbf{J_d}$, ω	[4 marks]
c) Derive wave equation for free space in terms of H	[4 morks]