Q.2) a) Using pumping lemma for regular Sets provide that the language, $L = \{0^m 1^n 0^{m+n} | m > = 1 \text{ and } n > = 1\}$ is not regular.

OR

b) Write Regular expression for each of the following languages: [6]
1. For Σ = {a,b}, set of all strings with no consecutive 'a's and 'b's.
2. For Σ = {a,b}, set of all strings in which every 0 is immediately followed by at least two 1's

Page 1 of 3

Q.3)	a)	Check whether the given grammer is in CNF S->bA aB	[6]
		A->bAA aS a	
		B->aBB bS b	
		If it is not in CNF, Find the equivalent CNF	
	Tyl	OR OR	F
	b)	Explain Chomsky Hierarchy of Grammar.	[6]
		RON MARKAGA IN CHARRA	
Q.4)	a)	Construct a PDA for accepting a language $l=\{a^nb^{2n} n>=1\}$	[4]
		OR	
	b)	Define PDA. What are different types of PDA?	[4]
			(*)
Q.5)	a)	Write short notes on	[6]
		i) Non Deterministic TM	
		ii) Composite TM	
	b)	Design TM to accept the set L of all strings formed with 0&1 and Having Substring '000'.	[4]
	c)	Construct a Turing Machine	[4]
	,	(Chas s, the log art of the OK	
Q.6)	a)	Design a Turing Machine to accept the language $L = \{w \mid w \in (a+b)^*\}$ containing the substring aab.	[6]
	b)	Write short notes on:	[4]
		1)Universal Turing Machine	
		2) Multi-tape Turing Machine	
	c)	Construct a Turing Machine to accept an even palindrome over{a,b}	. [4]
Q.7)	a)	Explain Tractable and Intractable problem.	[6]
	b)	Define and explain Recursive and Recursively enumerable language	s [4]
	c)	Explain in detail, the polynomial -time reduction approach for proving that a problem is NP- Complete.	[4]
		OR	
Q.8)	9)	Explain post correspondence problem.	[6]
Q.0)	u)		
		page 2 c	f 3

- b) Show that if a language L and its complement L are both recursively [4] enumerable languages, then L is recursive.
- c) Differentiate between P and NP classes

[4]