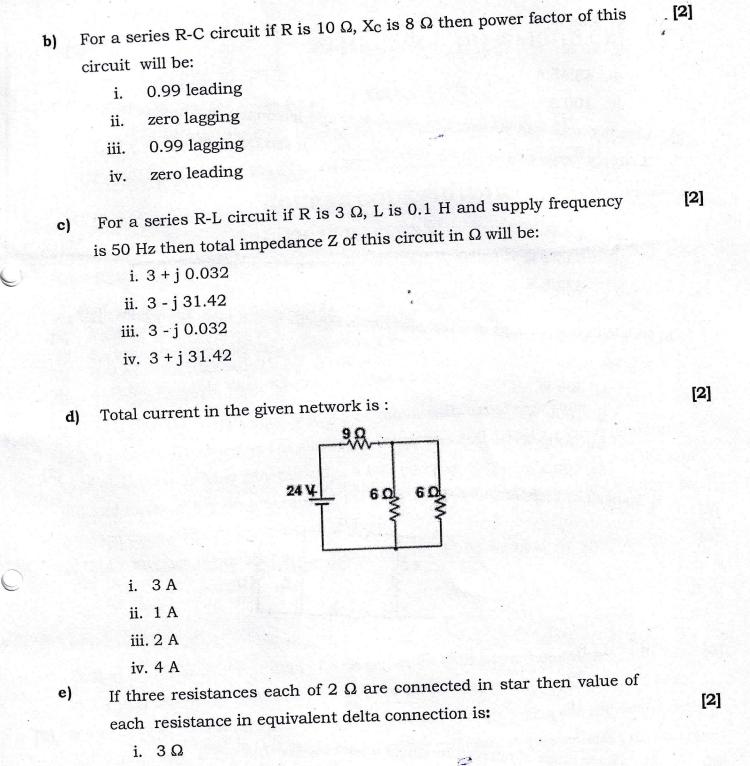
Total No. of Printed Pages: 4 Total No. of Questions – [5] Paper code- V128-104B (BE-FF) G.R. No. MAYIS / BACKLOG F. Y. B. TECH. (COMMON) (SEMESTER - II) COURSE NAME: BASIC ELECTRICAL ENGINEERING COURSE CODE: 10174B (2017 PATTERN) [Max. Marks: 50] Time: [2 Hours] (*) Instructions to candidates: Answer Q.1 OR Q.2, Q.3 OR Q.4 and Q.5. Figures to the right indicate full marks. Use of scientific calculator is allowed. 2) Assume suitable data wherever required. 3) [6] Q.1) a) Derive the torque equation of a dc motor with usual notations. b) A 6 pole wave connected DC shunt generator has 800 armature conductors and runs at 1500 rpm. This generator has a flux per pole of 8 mWb. Calculate i) the emf induced in the above dc generator ii) Find the speed at which it should be driven to [6] produce the same emf when lap connected. c) State any two significant applications of i) dc shunt motor ii) dc series motor. [4] OR [6] Q.2) a) Derive an emf equation of a dc generator with usual notations. b) A 4-pole DC shunt motor takes 10A from 200V supply. The armature and field resistances are 0.8 Ω and 200 Ω respectively. The armature is wave connected with 300 conductors. If the flux per pole is 10 mWb, calculate the speed and gross torque [6]


c) Explain function of commutator and brushes in D.C. Generator and state material

[4]

developed.

used for these components.

#2000분보다 하는 사람이 보면하고 있다. #2000년 이 사람이 되는 사람이 되는 사람이 되는 사람이 되었다. 그런 사람이 되어 되어 되어 되었다면 #200분보다 보다 되는	
to approve from a 415 V three	
Q.3) a) A 4 pole, 3-phase squirrel cage induction motor operates from a 415 V three phase ac supply whose frequency is 50 Hz. Calculate:	
: Synchronous speed of the motor	
ii. Speed of the motor when the slip is 0.05	
ii. Speed of the motor warent when the slip is 0.02 iii. Frequency of the rotor current when the slip is 0.02	
iv. Frequency of the rotor current at standstill iv. Frequency of the rotor current at standstill b) Draw torque-slip characteristics of three phase induction motor and indicate [4]	
b) Draw torque-slip characteristics of three phase	
starting torque and full load torque on it. c) Differentiate between squirrel cage and slip ring type of induction motor. (Any 6	
significant points)	
Q4) a) A three phase slip ring induction motor is wound for 6 poles and is supplied	Ĺ
Q4) a) A three phase slip ring induction motor	
from 400 V, 50 Hz three phase ac supply. Calculate:	
i. Synchronous speed	
ii. Rotor speed, when slip is 5% iii. Rotor frequency and percentage slip when rotor runs at 900 rpm [4]	
. 1. share induction motor is not son but	
starting? c) Write a note on capacitance start capacitor run single phase induction motor with	
set to the following points:	
i) Neat circuit diagram with proper labels ii) Advantages iv) Applications	_
Q.5) Attempt following multiple choice questions: [10x2=20 marks]	
a) For a single phase A.C. circuit if the supply voltage is 220 V, current is 3 A	
a) For a single phase A.C. enough Φ and phase angle Φ is 60° then the active power will be:	
사용물을 보고 있다. 그렇게 하면 하는 이 이 아이를 하면 하다면 하는데	
i. 330 W ii. Zero	
iii. 330 VA	
iv. 330 VAR	

f) Full load current on secondary side of a single phase 100 V/220 V,

ii. 1Ω

iii. 2Ω

iv. 6Ω

	이 마이스, 마이스 마이스 마이스 마이스 마이트를 하면 다른데 하는데 되었다면 하는데	2]
	iii. 45.45 A	
g)	iv. 100 A A transformer has 40 turns on secondary and maximum flux in core is 0.06 If supply frequency is 50 Hz, induced e.m. f. in secondary will be:	Wb. [2]
	i. 5328 V	
	ii. 5.328 V	
	iii. 53.28 V	
	iv. 532.8 V	
h	1) Half load Copper loss of a transformer is 500 W. At full load, the copper loss	[2]
	will be:	*
	i. 500 W	
	ii. 1000 W	
	iii. 2000 W	
	iv. 4000 W	[2]
	i) Equivalent resistance between terminals XY:	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(
	i. 8	
	ii. 24	
	iii. 16	
	iv. 4	[2]
	j) Phase angle of current in single phase series R-C circuit is	
	ive	
	ii. +ve	
	iii. 0 ⁰	
•	iv. none of the above	
	가게 가게 가장 가수를 하는데 하다 하는 사람이 되었다.	

4.54 A