Total No. of Questions - [5]

Total No. of Printed Pages: 4

G.R. No.	Paper Code: -	11128-104B	(BE-
젖, 명하다 뭐 맞하는 나무에 되는 것입니다.	19 2 0000.	07-0 T. 1-	

MAY-2019 /BACKLOG

F. Y. B. TECH. (COMMON) (SEMESTER - II)

COURSE NAME: BASIC ELECTRICAL ENGINEERING COURSE CODE: 10174B

(2017 PATTERN)

Time: [2 Hours] [Max. Marks: 50]

- (*) Instructions to candidates:
- 1) Answer Q.1 OR Q.2, Q.3 OR Q.4 and Q.5
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed
- 4) Use suitable data wherever required
- Q.1) a) Draw a neat sketch of a four pole dc machine and label its parts. [6]
- b) A back emf of 240 V is developed in a dc motor at 1500 rpm. Find the developed torque for an armature current of 25 A. [6]
- c) Derive equation for induced EMF in a D.C. generator.

[4]

OR

- Q.2) a) A 4 pole lap wound DC shunt motor has 600 conductors and draws a line current of 21 A from the supply. Its field winding takes a current of 1 A. If the flux per pole is 0.02 Wb, calculate the torque developed by an armature and speed of the motor if the back emf developed by motor is 200 V. [6]
- b) Draw torque-armature current and speed-torque characteristics of a dc series motor and mention any 2 applications of dc series motor. [6]
- c) A dynamo has a rated armature current at 240 amps. What is the current per path of the armature if the armature winding is i) lap ii) wave wound. The dynamo has 12 poles.

 [4]

- Q.3) a) A 3 HP, three phase, 4 pole, 400 V, 50 Hz induction motor runs at 1440 rpm. What will be the frequency of the rotor induced EMF?
- b) State any two applications of i) squirrel cage and ii) slip ring type of a three phase induction motor [4]
- c) Write a note on capacitance start single phase induction motor with respect to the following points:-
- i) Neat circuit diagram with proper labels ii) Advantages iii) Disadvantages iv) Applibeations

OR

- Q4) a) State any two applications of i) resistance split phase single phase induction motor and ii) capacitor start and run single phase induction motor. [4]
- b) A 3 Phase, 4 pole induction motor is connected to a 50 Hz supply. If frequency of rotor EMF at full load is 3 Hz, find full load slip and full load speed of motor. [4]
- c) Differentiate between squirrel cage and slip ring induction motor. (Any 6 significant points)
- Q.5) Attempt following multiple choice questions:

[10x2=20 marks]

- a) Three resistances each of equal value R are connected in star formation. The equivalent delta formation will have three resistances of equal value which is [2]
- i. R/3
- ii. 3R
- iii. 2R/3
- iv. R/2
- b) For a series R-L circuit if R is 4Ω , L is 0.2 H and supply frequency is 50 Hz then total impedance Z in Ω will be:
 - i. 4+j62.83
 - ii. 4 j 62.83
 - iii. 4 j 0.0159
 - iv. 4 + j 0.0159

[2]	If two resistances each of 10 Ω are connected in parallel across
	a voltage source of 20 V, then the current in each resistance
	will be
	i. 1.5A
	ii. 4.5 A
	iii. 2 A
	iv. 4 A
[2]	For a series circuit if the supply voltage is 230 V, current is 4 A
	and phase angle Φ is 90° then the active power will be
	i. 920 W
	ii. Zero
	iii. 57.5 W
	iv. 92 W
701	If three resistances each of 9 Ω are connected in delta then their
[2]	in three resistances each of 9 Ω are connected in delta then their equivalent resistance in star connection is
[2]	equivalent resistance in star connection is i. 9 Ω ii. 3 Ω iii. 27 Ω iv. 18 Ω
	equivalent resistance in star connection is
	equivalent resistance in star connection is i. 9 Ω ii. 3 Ω iii. 27 Ω iv. 18 Ω The transformation ratio of a single phase transformer of 1 KVA and having Primary and secondary voltage respectively 230V and 115 V, will be i. 1
	equivalent resistance in star connection is

The peak value of an ac sinusoidal current is $10\sqrt{2}$ A. Its rms value is:

[2]

g)

i. 10√2

h)	The reading of wattmeters connected on supply side and load side are	[2
	100 W and 85 W respectively during a direct loading test of a 115 V	
	/230 V transformers having a capacity of 1 KVA. The efficiency will be	
	i. 85%	
	ii. 100%	
	iii. 86.6%	
	iv. None of the above	
i)	In type transformer, core encircles the winding.	[2]
	i. core	
	ii. shell	
	iii. berry	
	iv. none of the above	
j)	Thevenin's resistance R _{Th} is found	2]
	 i. By removing only voltage sources along with their intern resistance. 	al
	ii. By short-circuiting the given two terminals.	
	iii. Between any two 'open' terminals.	
	iv. Across same open terminals as for V _{th} .	
	1450 HANGER (1721) : : : : : : : : : : : : : : : : : : :	

ii. 20

iii. 10A

iv. Data not sufficient