Total No. of Questions - [5]

Total No. of Printed Pages:2

G.R. No.	 1.5	10	
U.R. NO.			
i katadi. go			

Papez code - V128-109 (BE-FF)

MAY 2019 / END-SEM

F. Y. B.TECH. (COMMON) (SEMESTER - II)

COURSE NAME: Engineering Mathematics-II

COURSE CODE: ES12181 ES12171

(PATTERN 2017)

Time: [2 Hours]

[Max. Marks: 50]

(*) Instructions to candidates:

- 1) Answer Q.1 OR Q.2 and Q.3 OR Q.4 and Q.5
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed
- 4) Use suitable data where ever required
- Q.1.a) Find the equation of the sphere passing through four points (1,2,3), (0,-2,4), (4,-4,2) & (3,1,4). [6 marks]
 - b) Find the equation of the right circular cone with vertex at (1,-1,2), axis the line

 $\frac{x-1}{2} = \frac{y+1}{1} = \frac{z-2}{-2}$ and semi-vertical angle 45°. [6 marks]

c) Find the equation of right circular cylinder of radius 3 whose axis passes through (1, 2, 3) and has direction cosines proportional to 1,1,1
 [4 marks]

OR

Q.2) a) Prove that plane x + y + z = 1 touches the sphere

 $3(x^2 + y^2 + z^2) - 30x + 12y - 18z + 89 = 0$. Find point of contact. [6marks] b) Find the equation of the right circular cone with vertex at origin, whose axis is the line $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and semi vertical angle 30° . [6 marks]

c) Find the equation of the right circular cylinder of radius 4 and whose axis lies along the straight line $\frac{x-2}{2} = \frac{y-1}{-4} = \frac{z+2}{3}$. [4 marks]

Q.3) a) Evaluate
$$\iint_{R} (x^2 + y^2) dx dy$$
 over the area of the triangle whose vertices are (0,1), (1,1), (1,2).

[6 marks]

b) Evaluate
$$\int_{0}^{\frac{\pi}{2}} \int_{\frac{\pi}{2}}^{\pi} \cos(x + y) dxdy$$
 [4 marks]

c) Find the volume common to the cylinders $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$ [4 marks]

(1) a) Evaluate $\int \int$	A REAL PROPERTY AND A REAL	OR		
(2.4) a) Evaluate \prod_{R}	$x^2 y^2 dx dy$, where	<i>R</i> is positive quadra	ant of $x^2 + y^2 = 1$	[6 marks]
b) Evaluate $\int_{0}^{1} \int_{y}^{1}$	$\int_{2}^{1} \int_{0}^{1-x} x dz dx dy$			[4 marks]
c) Find the total	l area of the curve	$er = a(1-\cos\theta).$		[4 marks]
Q. 5) Solve				
1) The differential e	equation $1 + \frac{dy}{dy} -$	$\left(\frac{d^2y}{d^2y}\right)^{\frac{3}{2}} = 0$ is of :		
	order 1 and degree			
	order 2 and degree			
	order 3 and degree			
d. O	order 3 and degree	e 3		[2marks]
2) The differential e	quation of orthog	onal trajectories of	family of curves xy	= c is.
a. $x \frac{dx}{dy} + y$	= 0.	12.0 Mes 8 0-360 		
b. $-x\frac{dx}{dy} + \frac{dx}{dy}$				
c. $-x\frac{dx}{dy} - \frac{dx}{dy}$	y=0.			
d. $x \frac{dy}{dx} + y$	= 0.			[2marks]
				*
3) The orthogonal tra				[2marks]
		hily of rectangular hyperator $f(c)y = mx$ (d)		[2marks]
	1 (b) $x^2 + y^2$	= 1 (c)y = mx (d)	$x = y^2$	[2marks] [2marks]
(a) $x^2 - y^2 = 1$ 4) For the function f (a) $\frac{1}{\pi}$	1 (b) $x^2 + y^2$ x) = cos x in the interval (b) 2π	= 1 (c)y = mx (d)	$x = y^2$	
(a) $x^2 - y^2 = 2$ 4) For the function f (2	1 (b) $x^2 + y^2$ x) = cos x in the interval (b) 2π	= 1 (c)y = mx (d) erval (- π , π) the value	$\mathbf{x} = \mathbf{y}^2$ of \mathbf{b}_n is	
(a) $x^2 - y^2 = 1$ 4) For the function f (a) $\frac{1}{\pi}$	1 (b) $x^2 + y^2$ x) = cos x in the interval (b) 2π	= 1 (c)y = mx (d) erval (- π , π) the value	$\mathbf{x} = \mathbf{y}^2$ of \mathbf{b}_n is	
(a) $x^2 - y^2 = 1$ 4) For the function f (a) $\frac{1}{\pi}$	1 (b) $x^2 + y^2$ (c) $x = \cos x$ in the interval (b) 2π (c) $\sqrt{\pi}$	= 1 (c)y = mx (d) erval (- π , π) the value (c) 0	$x = y^{2}$ of b _n is (d) $\frac{2}{\pi}$	[2marks]
(a) $x^2 - y^2 = 1$ 4) For the function f (2) (a) $\frac{1}{\pi}$ 5)The value of $\Gamma(1/2)$ (a) $\sqrt{\frac{\pi}{2}}$	1 (b) $x^2 + y^2$ (c) $x = \cos x$ in the interval (b) 2π (c) $\sqrt{\pi}$	= 1 (c)y = mx (d) erval (- π , π) the value (c) 0	$x = y^{2}$ of b _n is (d) $\frac{2}{\pi}$	[2marks] [2marks] [2marks]
(a) $x^2 - y^2 = 1$ 4) For the function f (2) (a) $\frac{1}{\pi}$ 5) The value of $\Gamma(1/2)$ (a) $\sqrt{\frac{\pi}{2}}$ 6) The value of erf(0) (a) 2	1 (b) $x^2 + y^2$ (c) = cos x in the interval (b) 2π (c) $\sqrt{\pi}$ (c) $\sqrt{\pi}$ (c) dx is	= 1 (c)y = mx (d) erval (- π , π) the value (c) 0 (c) $\frac{1}{2}$!	$x = y^{2}$ of b _n is (d) $\frac{2}{\pi}$ (d) $\frac{\sqrt{\pi}}{2}$ (d) - 4	[2marks] [2marks]
(a) $x^2 - y^2 = 1$ 4) For the function f (2 (a) $\frac{1}{\pi}$ 5) The value of $\Gamma(1/2)$ (a) $\sqrt{\frac{\pi}{2}}$ 6) The value of erf(0) (a) 2 7) erf(- ∞) is (a) 0	1 (b) $x^2 + y^2$ (c) $x = \cos x$ in the interval (b) 2π (c) $\sqrt{\pi}$ (c) $\sqrt{\pi}$ (c) $\sqrt{\pi}$ (c) $\sqrt{2\pi}$ (c) $\sqrt{2\pi}$	= 1 (c)y = mx (d) erval (- π , π) the value (c) 0 (c) $\frac{1}{2}$! (c) $\sqrt{3}$ (c) + 1	$x = y^{2}$ of b _n is (d) $\frac{2}{\pi}$ (d) $\frac{\sqrt{\pi}}{2}$ (d) - 4 (d) - 1	[2marks] [2marks] [2marks] [2marks]
(a) $x^2 - y^2 = 1$ 4) For the function f (2 (a) $\frac{1}{\pi}$ 5) The value of $\Gamma(1/2)$ (a) $\sqrt{\frac{\pi}{2}}$ 6) The value of erf(0) (a) 2 7) erf(- ∞) is (a) 0 8) The horizontal asymptotic for the function of the functio	1 (b) $x^2 + y^2$ (c) $x = \cos x$ in the interval (b) 2π (c) 2π (c) $\sqrt{\pi}$ (c) $\sqrt{\pi}$ (c) $\sqrt{\pi}$ (c) $\sqrt{\pi}$ (c) $\sqrt{2\pi}$ (c)	= 1 (c)y = mx (d) erval (- π , π) the value (c) 0 (c) $\frac{1}{2}$! (c) $\sqrt{3}$ (c) + 1 e x ² y ² = a ² (x ² + y ²) i	$x = y^{2}$ of b _n is (d) $\frac{2}{\pi}$ (d) $\frac{\sqrt{\pi}}{2}$ (d) - 4 (d) - 1 is	[2marks] [2marks] [2marks] [2marks]
(a) $x^2 - y^2 = 1$ 4) For the function f (2 (a) $\frac{1}{\pi}$ 5) The value of $\Gamma(1/2)$ (a) $\sqrt{\frac{\pi}{2}}$ 6) The value of erf(0) (a) 2 7) erf(- ∞) is (a) 0 8) The horizontal asymptotic for the function of the functio	1 (b) $x^2 + y^2$ (c) $x = \cos x$ in the intervention (b) 2π (b) 2π (c) $\sqrt{\pi}$ (c)	= 1 (c)y = mx (d) erval (- π , π) the value (c) 0 (c) $\frac{1}{2}$! (c) $\sqrt{3}$ (c) + 1 e x ² y ² = a ² (x ² + y ²) i (c) y = 0	$x = y^{2}$ of b _n is (d) $\frac{2}{\pi}$ (d) $\frac{\sqrt{\pi}}{2}$ (d) - 4 (d) - 1	[2marks] [2marks] [2marks] [2marks] [2marks]
(a) $x^2 - y^2 = 1$ 4) For the function f (x (a) $\frac{1}{\pi}$ 5) The value of $\Gamma(1/2)$ (a) $\sqrt{\frac{\pi}{2}}$ 6) The value of erf(0) (a) 2 7) erf(- ∞) is (a) 0 8) The horizontal asym (a) $y = \pm a$	1 (b) $x^2 + y^2$ (c) $x = \cos x$ in the intervention (b) 2π (b) 2π (c) $\sqrt{\pi}$ (c) $\sqrt{\pi}$ (c) $\sqrt{\pi}$ (c) ∞ (c) ∞ (c) $x = 0$ (c) $\cos\theta$) is symmetric	= 1 (c)y = mx (d) erval (- π , π) the value (c) 0 (c) $\frac{1}{2}$! (c) $\sqrt{3}$ (c) + 1 e x ² y ² = a ² (x ² + y ²) i (c) y = 0	$x = y^{2}$ of b _n is $(d) \frac{2}{\pi}$ $(d) - \frac{\sqrt{\pi}}{2}$ $(d) - 4$ $(d) - 1$ is $(d) x = \pm a$	[2marks] [2marks] [2marks] [2marks] [2marks]
(a) $x^2 - y^2 = 1$ 4) For the function f (x (a) $\frac{1}{\pi}$ 5) The value of $\Gamma(1/2)$ (a) $\sqrt{\frac{\pi}{2}}$ 6) The value of erf(0) (a) 2 7) erf(- ∞) is (a) 0 8) The horizontal asyn (a) $y = \pm a$ 9) The curve r = a (1 + 1)	1 (b) $x^2 + y^2$ (c) $x^2 + y^2$ (c) $x = \cos x$ in the intervention (b) 2π (c) 2π (c) $\sqrt{\pi}$ (c) $\sqrt{\pi}$	= 1 (c)y = mx (d) erval (- π , π) the value (c) 0 (c) $\frac{1}{2}$! (c) $\sqrt{3}$ (c) + 1 e x ² y ² = a ² (x ² + y ²) i (c) y = 0 about (c) Y axis	$x = y^{2}$ of b _n is $(d) \frac{2}{\pi}$ $(d) \frac{\sqrt{\pi}}{2}$ $(d) - 4$ $(d) - 1$ is $(d) x = \pm a$	[2marks] [2marks] [2marks] [2marks] [2marks]