G.R. No.

Paper Code - VII8-104 NCB (BE-FF)

MAY 2019 / BACKLOG

F. Y. B.TECH. (COMMON) (SEMESTER - I)

COURSE NAME: Engineering Physics (NCB)

COURSE CODE: ES10184A-NCB

(PATTERN 2018)

Time: [2 Hours]

[Max. Marks: 50]

Instructions to candidates:

- 1) Attempt Q.1, Q.2, Q.3, Q.4 OR Q.5, Q.6 OR Q.7, Q.8 OR Q.9 and Q.10
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed.
- 4) Use suitable data where ever required.
- Q1(a) Derive root mean square value for $u(t) = u_0 \sin(\omega t + \varphi)$. [4]
- Q1(b) Define logarithmic decrement δ for an under-damped free oscillator and derive an expression for δ using the expression $\omega_D = \omega_n \sqrt{1-\zeta^2}$.
- Q2(a) Calculate the velocity for primary and secondary sound waves in diamond. Given, for diamond, $B = 53 \times 10^{10} \, N/m^2$, $S = 44 \times 10^{10} \, N/m^2$, $\rho = 3540 kg/m^3$
- Q2(b) Find the reverberation time of a hall with $1 \times b \times h = 27m \times 21m \times 12m$ which has 20 windows with an area of $2m \times 1m$ each. Assume apparent absorption coefficient of all the surfaces to be 0.2 OWU.
- Q3(a) With the help of a neat diagram show that interplanar distance d for [6] (hkl) planes is

 $\frac{1}{d^2} = \left(\frac{h}{a}\right)^2 + \left(\frac{k}{b}\right)^2 + \left(\frac{l}{c}\right)^2$

for an orthorhombic structure with lattice parameters a, b and c.

Q3(b) With the help of a neat diagram, derive the expression for resolving power of a microscope. Discuss Abbe's empirical formula for resolving power in terms of numerical aperture.

Q4(a) If $Z = \frac{A}{B}$, show that $\left(\frac{\Delta Z}{Z}\right)^2 = \left(\frac{\Delta A}{A}\right)^2 + \left(\frac{\Delta B}{B}\right)^2$ [6]

Q4(b) Draw the band diagram of an avalanche photo diode and hence [4] discuss mechanism of internal gain.

Q5(a) Discuss three types of intrinsic noise associated with a resistor with [6] appropriate formulae.

'Q5(b)	If $Z = Ae^B$, then calculate $Z \pm \Delta Z$ if $A \pm \Delta A = 47.4 \pm 0.4$ and $B \pm \Delta B = 2.4 \pm 0.3$.	[4]
Q6(a)	With the help of a diagram of transfer function, explain linearity, sensitivity, input range and output range.	[6]
Q6(b)	Discuss in brief four applications of an accelerometer. OR	[4]
Q7(a)	With the help of a diagram derive an expression for flow rate in a orifice type flowmeter.	[6]
Q7(b)	For a Silicon strain gauge with gauge factor is 40 and Poisson ratio of 0.265, calculate piezo-resistivity $\frac{\Delta \rho}{a}$ for a strain of 10^{-5} .	[4]
Q8(a)	Explain with the help of neat diagrams principle, construction and working of a Nd:YAG laser.	[6]
Q8(b)	What is the diffraction limited beam divergence in degrees of CO_2 laser (λ =10.6 μ m) having an output aperture of 0.1 inch?	[4]
Q9(a)	Explain laser characteristics like monochromaticity, coherence, directionality, intensity.	[6]
Q9(b)	Find the intensity of a laser beam of 120 mW power, having a beam diameter of 2.1 mm. Assume, intensity to be uniform across the beam.	[4]
Q10(a)	If $Z = \frac{A}{B}$ then $\left(\frac{\Delta Z}{Z}\right)^2$ is (i) $\frac{\Delta A}{A} + \frac{\Delta B}{B}$ (ii) $\frac{\Delta A}{A} - \frac{\Delta B}{B}$	[1]
	$(iii) \left(\frac{\Delta A}{A}\right)^2 + \left(\frac{\Delta B}{B}\right)^2 (iv) \left(\frac{\Delta A}{A}\right)^2 - \left(\frac{\Delta B}{B}\right)^2$	
Q10(b)	Which of the following errors is statistical error (i) random error (ii) human error (iii) systematic error (iv) all of the above	[1]
Q10(c)	Pink noise voltage is related with temperature T as proportional to (i) T (ii)T ² (iii)T ^{1/2} (iv) T ^{-1/2}	[1]
Q10(d)	Lasers have high coherence because they are (i) monochromatic (ii) intense (iii) directional (iv) efficient	[1]
Q10(e)	The lasing in CO ₂ laser correspond is due to transitions between (i) electronic levels (ii) vibrational levels (iii) both of the above (iv) None of the above	[1]
Q10(f)	Life time of a metastable state is (i) nanosecond (ii) millisecond (iii) infinity (iv) zero	[1]

0000 2 20