G.R. No.

Paper code - V128-1011 (BE-FF)

MAY 2019/ENDSEM

F. Y. B. TECH. (COMMON) (SEMESTER - II)

COURSE NAME: Basic Mechanical Engineering

COURSE CODE: ME12173

		(2	017 PATTERN)		
Tim	ne: [2 Hours]			[Max. Marks: 50)]
(*) 1) 2) 3) 4)	Answer Q.1 Figures to t Use of scien	os to candidate OR Q.2, Q.3 OR he right indicate atific calculator i data where ever	Q.4 and Q.5 full marks. s allowed		*
Q.1	b) Explain diffe	six lathe operations erent Drilling machine note on sand casting p	, -		[6] [6] [4]
			OR		
Q.2)	a) Explain follo 1 counter 2 2 counter 3 3 reaming		ns		[6]
		cation of metal joining	process. Explain Gas welc	ling in detail	[6]
	c) Draw labelle	d diagram of sensitive	drilling machine		[4]
Q.3)	a) Give the deta	il classification of inte	ernal combustion engine.		[6]
	b) Explain with	neat sketch working o	of Domestic refrigerator.		[4]
	c) Draw sketch	of centrifugal compres	ssor.		[4]
			OR		
			f window air conditioner.		[6]
		neat sketch working o	f centrifugal pump		[4]
	c) Compare S. I	. and C.I. Engines.			[4]
Q.5)	Attempt follo	wing multiple cho	ice questions:		
01.	During a Cy	cle consisting of 4 pr ermine the net work f	ocesses, the heat transfers	are 60kJ, -8 kJ, -34 kJ	[2]
02.			ency of a heat engine ope	rating between 227 ⁰ C	[2]
	a) 30%	b) 40%	c) 20%	d) 60%	

idler(s) is/are	_					
			N ₃ 1	N ₆		
		N2 (2)	X		1	
				5 6		
		Driver	N ₁	Driv	en	
a) Only 2		b) Only 4	c)	Only 5	d) I	Both 3 and 5
	machine				College College	otates at 975 rp
						ner. Gear C and
are mounted given below	on same s	shaft. What	is speed of ge	ear F? The nu	mber of teet	th on each gear
Gear	Α	В	С	D	E	F
No of Teeth	20	50	25	75	26	65
-1.50		\ F2	-> 54	ے ال		
a) 50	b,) 52	c) 54	d) 5		o insertina e
The measure	ement of	a thermod	vnamice pro	nerty know	n as tempe	erature is has
	ement of	a thermod	ynamics pro	operty know	n as tempe	erature is bas
on	= -		ynamics pro			
ona) Zeroth law	of therm	odynamics	ynamics pro	b) Firs	st law of the	erature is bas rmodynamics ermodynamics
ona) Zeroth law c) Second law	of therm	odynamics nodynamics	ynamics pro	b) Firs	st law of the	rmodynamics
ona) Zeroth law c) Second law Grinding who	of therm w of therm	odynamics nodynamics le up of	50	b) Firs d) Thi	st law of the	rmodynamics ermodynamics
ona) Zeroth law c) Second law Grinding who	of therm w of therm	odynamics nodynamics	50	b) Firs	st law of the	rmodynamics
ona) Zeroth law c) Second law Grinding who a) Steel Carbon conte	of therm v of therm eel is mad b	nodynamics nodynamics le up of) cast iron d steel can b		b) Firs d) Thi — c) ceramic	st law of the	rmodynamics ermodynamics d) abrasive
ona) Zeroth law c) Second law Grinding who a) Steel Carbon conte	of therm v of therm eel is mad b	nodynamics nodynamics le up of) cast iron		b) Firs d) Thi	st law of the	rmodynamics ermodynamics
ona) Zeroth law c) Second law Grinding who a) Steel Carbon conte a) 0.51%	of therm of therm eel is mad b ent of mile	nodynamics nodynamics le up of) cast iron d steel can b b) 0.85%	e	b) Firs d) Thi c) ceramic c) 0.15%	at law of the	rmodynamics ermodynamics d) abrasive
ona) Zeroth law c) Second law Grinding who a) Steel Carbon conte a) 0.51% The property	of therm of therm eel is mad b ent of mile	nodynamics nodynamics le up of) cast iron d steel can b b) 0.85%	ewn into the s	b) Firs d) Thi c) ceramic c) 0.15%	et law of the rd law of the	rmodynamics ermodynamics d) abrasive
ona) Zeroth law c) Second law Grinding who a) Steel Carbon conte a) 0.51% The property a) Resilience	of therm of therm eel is mad b ent of mile	nodynamics nodynamics le up of o) cast iron d steel can b b) 0.85% rial to be dra b) mallea	ewn into the subility	b) Firs d) Thi c) ceramic c) 0.15% cheets is know c) ductilit	at law of the	rmodynamics ermodynamics d) abrasive d) 1.25%
ona) Zeroth law c) Second law Grinding who a) Steel Carbon conte a) 0.51% The property a) Resilience Bevel gears	of therm of therm eel is mad b ent of mile of mater	nodynamics nodynamics le up of) cast iron d steel can b b) 0.85% rial to be dra b) mallea	ewn into the subility	b) Firs d) Thi c) ceramic c) 0.15% sheets is know c) ductilit	et law of the rd law of the wn asy	rmodynamics ermodynamics d) abrasive d) 1.25% d) toughness
ona) Zeroth law c) Second law Grinding who a) Steel Carbon conte a) 0.51% The property a) Resilience Bevel gears	of therm of therm eel is mad b ent of mile of mater	nodynamics nodynamics le up of) cast iron d steel can b b) 0.85% rial to be dra b) mallea	ewn into the subility	b) Firs d) Thi c) ceramic c) 0.15% cheets is know c) ductilit	et law of the rd law of the wn asy	rmodynamics ermodynamics d) abrasive d) 1.25%
ona) Zeroth law c) Second law Grinding who a) Steel Carbon conte a) 0.51% The property a) Resilience Bevel gears a a) two perper	of therm w of therm eel is mad b ent of mile of mater are used t	nodynamics nodynamics le up of) cast iron d steel can b b) 0.85% rial to be dra b) mallea to transmit i	ewn into the subility motion betwinclined	b) Firs d) Thi c) ceramic c) 0.15% sheets is know c) ductilit	et law of the rd law of the wn asy	rmodynamics ermodynamics d) abrasive d) 1.25% d) toughness
a) Zeroth law c) Second law Grinding who a) Steel Carbon conte a) 0.51% The property a) Resilience Bevel gears a a) two perper	of therm of therm well is mad bent of mile of mater are used t	nodynamics nodynamics le up of) cast iron d steel can b b) 0.85% rial to be dra b) mallea to transmit i b) to	ewn into the subility motion betwinclined	b) Firs d) Thi c) ceramic c) 0.15% cheets is know c) ductilit een c) two para	wn asy shafts.	rmodynamics ermodynamics d) abrasive d) 1.25% d) toughness
ona) Zeroth law c) Second law Grinding who a) Steel Carbon conte a) 0.51% The property a) Resilience Bevel gears a a) two perperty The following a) Zinc Which amon	of therm w of therm w of therm eel is mad b ent of mile of mater are used t ndicular ag is ferro b) Tin g the foll	nodynamics nodynamics le up of) cast iron d steel can b b) 0.85% rial to be dra b) mallea to transmit r b) to i	ewn into the subility motion betwinclined c) brass	b) Firs d) Thi c) ceramic c) 0.15% sheets is know c) ductilit een c) two para	wn asy shafts. allel d)	rmodynamics ermodynamics d) abrasive d) 1.25% d) toughness
The measure on	of therm of therm w of therm eel is mad b ent of mile of mater are used t ndicular ag is ferro b) Tin g the foll or?	dodynamics nodynamics le up of) cast iron d steel can b b) 0.85% rial to be dra b) mallea to transmit i b) to ous material lowing is co	ewn into the subility motion between the colorest relation	b) Firs d) Thi c) ceramic c) 0.15% sheets is know c) ductilit een c) two para	wn asy shafts. allel d) ast iron OP of heat	rmodynamics ermodynamics d) abrasive d) 1.25% d) toughness all of above

c) Arc of contact between the belt and smaller pulley d) all of the above