G.R. No.

Paper Code - U128-101 (ESE)

MAY 2019 / END-SEM

F. Y. B.TECH. (COMMON) (SEMESTER - II)

COURSE NAME: Engineering Mathematics-II

COURSE CODE: ES12181

(PATTERN 2018)

Time: [2 Hours]

[Max. Marks: 50]

- (*) Instructions to candidates:
- 1) Attempt Q.1, Q.2, Q.3, Q.4 Or Q.5, Q.6 Or Q.7, Q.8 Or Q.9 and Q.10
- 2) Q.10 is compulsory.
- 3) Figures to the right indicate full marks.
- 4) Use of scientific calculator is allowed.
- 5) Use suitable data where ever required.

Q 1) a)
$$\frac{dy}{dx} + y \cot x = \sin 2x$$

OR

b) In a circuit containing inductance L, resistance R, and voltage E, the current I is given by $E = RI + L\frac{dI}{dt}$. Given L= 640H, R=250 Ω and E=500volts. I=0 when t = 0. Find the time that elapses, before it reaches 90% of its maximum value.

Q 2) a) Trace the curve
$$x^2y^2 = x^2 + 1$$
.

[4]

[4]

OR

b) Find the total length of the of the curve
$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$$
. [4]

Q 3) a) Show that plane
$$2x - 2y + z + 12 = 0$$
 is tangential to the sphere $x^2 + y^2 + z^2 - 2x - 4y + 2z - 3 = 0$ and find the point of contact. [6]

OR

b) Find the equation of the right circular cylinder of radius 2 and whose axis lies along the straight line $\frac{x-1}{2} = \frac{y+3}{-1} = \frac{z-2}{5}$. [6]

Q 4)	a) Evaluate $\int_{0}^{\pi} \int_{0}^{\pi} \cos 2y \sqrt{1-a^2 \sin^2 x} dx dy$	[6]
	b) Find the volume of paraboloid of revolution of $x^2 + y^2 = 4z$ cut off by the plane $z = 4$.	[4]
	OR WITH THE RESIDENCE OF THE PARTY OF THE PA	
Q 5)	a) Evaluate $\iiint \frac{dxdydz}{\sqrt{a^2 - x^2 - y^2 - z^2}}$ over the volume the sphere $x^2 + y^2 + z^2 = a^2$ in the	ne
	positive octant.	[6]
	b) Find the total area of the curve $r^2 = a^2 \cos 2\theta$.	[4]
Q 6)	a) Find the constants a & b, so that the surface $ax^2 - byz = (a+2)x$ will be orthogonal to the surface $4x^2y + z^3 = 4$ at the point $(1, -1, 2)$.	[6]
	b) Find the directional derivative $\phi = x^2y + y^3z$ at $(2,-1,1)$ along the direction which	
	makes an equal angle with co-ordinate axes.	[4]
1.8	OR The second se	
Q 7)	a) Show that the field given by $\overline{F} = (y \sin z - \sin x)\vec{i} + (x \sin z + 2yz)\vec{j} + (xy \cos z + y^2)\vec{k}$	
	is irrotational and hence find the scalar potential ϕ' such that $\overline{F} = \nabla \phi$.	[6]
	b) If the directional derivative of $\phi = axy^2 + byz + cz^2x^3$ at $(1,2,-1)$ has maximum	-
	magnitude '64' in a direction parallel to z-axis, find the values of a, b, and c.	[4]
Q 8)	a) Evaluate $\int_C \vec{F} \cdot d\vec{r}$ for $\vec{F} = (2y + 3)\hat{i} + xz\hat{j} + (yz - x)\hat{k}$ along the straight line joining	
	(0,0,0) and (3,1,1). b) Using Gauss Divergence theorem, evaluate	[6]
	$\iint \vec{r} \cdot \hat{n} dS, \text{ where } \vec{r} = x\vec{i} + y\vec{j} + z\vec{k} \text{ over the sphere } x^2 + y^2 + z^2 = 1.$	Γ 4
	\$	
	OR	
Q 9)	a) Using Stokes theorem, evaluate $\iint_{S} (\nabla \times \vec{F}) . d\vec{S}$	
	where $\vec{F} = 3(x-y)\hat{\imath} + 3xz\hat{\jmath} + xy\vec{k}$ and S is the surface of the paraboloid $z = 1 - x^2 + y^2, z \ge 0$.	[6]
	b) Using Green's Theorem evaluate the integral $\int_C \vec{F} \cdot d\vec{r}$ for	[6]
	$\overline{F} = \sin y \hat{\imath} + x(1 + \cos y) \hat{\jmath}$ where C is the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, z = 0$.	[4]

Page 2 of 3

Q 10)	Attempt all the questions (Each carry one mark) a) If $\phi = mx^2 + y + z$, $\bar{b} = 2\bar{\imath} - 3\bar{\jmath} + \bar{k}$ and $\nabla \phi$ at the point (1,0,1) is perpendicular to \bar{b}
	then $m=$ a) 0 b) $\frac{3}{2}$ c) $\frac{1}{2}$ d) $-\frac{5}{2}$
	b) The divergence of vector field $\vec{F} = 3xz\bar{\imath} + 2xy\bar{\jmath} - yz^2\bar{k}$ at a point (1,1,1) is a) 3 b) 4 c) 7 d) 0.
	c) Angle between tangents to the curve $x = 2t^2$, $y = t^2 - 4t$, $z = 2t - 5$ at $t = 0$ and $t = 1$ is a) $\cos^{-1}\left(\frac{12}{\sqrt{6}\sqrt{5}}\right)$ b) $\cos^{-1}\left(\frac{3}{\sqrt{6}\sqrt{5}}\right)$ c) $\cos^{-1}\left(\frac{3}{\sqrt{5}}\right)$ d) $\tan^{-1}\left(\frac{3}{\sqrt{6}\sqrt{5}}\right)$
	d) By Gauss Divergence theorem, value of $\iint_S (y^2 z^2 \bar{\imath} + z^2 x^2 \bar{\jmath} + x^2 y^2 \bar{k}) . d\bar{S}$ where S is the
	sphere $x^2 + y^2 + z^2 = 9$ is
	a) $\frac{\pi}{3}$ b) 3 c) $\frac{4\pi}{3}$ d) 0
	e) Value of $\int_C \overline{F} \cdot d\overline{r}$ for $\overline{F} = y\hat{i} + x\hat{j}$ along parabolic arc $y = x^2$ from (0,0) and (1,1) is
	a) 0 b) 1 c) 2 d) 3
	377 1 4

f) Work done in moving a particle along a circle $x^2 + y^2 = a^2$ round once under force field $\vec{F} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ is a) 0 b) 1 c) 2 d) 3