G.R. No.

Paper Code - U218-111 (BE-FS)

May 2019/ENDSEM

S. Y. B. TECH. (CIVIL ENGINEERING) (SEMESTER - II)

COURSE NAME: Engineering Mathematics III

COURSE CODE: CVUA21171

(PATTERN 2017)

Time: [2 Hours]

[Max. Marks: 50]

- (*) Instructions to candidates: Answer Q.1, Q.2, Q.3, Q.4, Q.5 OR Q.6, Q.7 OR Q.8
- Figures to the right indicate full marks.
- Use of scientific calculator is allowed
- Use suitable data whereever required

Solve by variation of parameters $(D^2 + 4)y = \sec 2x$

[6]

B Solve
$$x^3 \frac{d^2 y}{dx^2} + 3x^2 \frac{dy}{dx} + xy = \sin(\log x)$$
 [6]

Q.2 A Solve the following system of equations by Gauss-Seidel method:

 $10x_1+x_2+x_3=12$

 $2x_1+10x_2+x_3=13$

 $2x_1+2x_2+10x_3=14$

[6]

OR

Using fourth order Runge-Kutta method, solve $\frac{d^2y}{dx^2} = x \left(\frac{dy}{dx}\right)^2 - y^2$ for x=0.2 correct to

four decimal places .Initial conditions are x=0, y=1, $\frac{dy}{dy}$ =0

[6]

Q.3 A Calculate the first four moments about the mean of the given distribution . Also find β_1 and β_2 .

X	2.0	2.5	3.0	3.5	4.0	4.5	5.0
f	5	38	65	92	70	40	10

[6]

Find the regression line for the following data:

X	10	14	19	26	30	34	39
f	12	16	18	26	29	35	38

And estimate y for x=14.5 and x for y=29.5.

[6]

[4]

[6]

[4]

[6]

[4]

[4]

[6

[4

- Show that $\overline{F} = (ye^{xy}\cos z)\mathbf{i} + (xe^{xy}\cos z)\mathbf{j} (e^{xy}\sin z)\mathbf{k}$ is irrotational . Find the scalar φ such that $\nabla \varphi = \overline{F}$
- Q.5 A Verify Greens theorem for $\overline{F} = x^2 i + xy j$ over the over the region R enclosed by $y=x^2$ and the line y=x.
 - B Prove that $\iint_{S} (\phi \nabla \psi \psi \nabla \phi) \bullet ds = \iiint_{V} (\phi \nabla^{2} \psi \psi \nabla^{2} \phi) dv$
 - C Evaluate : $\iint (\nabla x \overline{F}) \bullet d\overline{s} \text{ for } \overline{F} = y\overline{i} + z\overline{j} + x\overline{k}. \text{ where s is the surface of the paraboloid } z = 1 x^2 y^2, z \ge 0$
- Q.6 A Find the work done in moving a particle once round the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$

Z=0 under the field of force $\vec{F} = (2x - y + z)\vec{i} + (x + y - z^2)\vec{j} + (3x - 2y + 4z)\vec{k}$ is the field is conservative.

- B Evaluate $\iint (x^3 \bar{i} + y^3 \bar{j} + z^3 \bar{k}) \bullet d\bar{s}$ where S is the surface of the sphere $x^2 + y^2 + z^2 = 16$.
- Evaluate: $\iint \left(\nabla \times F\right) \bullet ds$, where $F = (x^3 y^3)i xyzj + y^3k$

and S is the surface $x^2+4y^2+z^2-2x=4$ above the plane x=0

Solve $\frac{\partial v}{\partial t} = k \frac{\partial^2 v}{\partial x}$ if i) $v \neq \infty$ as $t \to \infty$, ii) $\left(\frac{\partial v}{\partial t}\right)_{x=0} = 0$ for all t

iii) v(L,t)=0 for all t. iv) $v(x,0)=v_0$.

Q.7 A

A string is stretched and fastened to two points L apart .Motion is started by displaying

the string in the form $u = a\sin \frac{\pi x}{u}$ from which it is released at t=0. Write the [4]

conditions in mathematical form.

In above question 7) B) find the displacement u(x,t) from one end OR

Solve the equation
$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0 \text{ with conditions}$$

i)v=0 when $y \to \infty$ ii) v=0 when x=0 and for all y iii) v=0 when x= 1 and for all y v=x(1-x) when y=0 and for 0 < x < 1

[6]

В

The equation for conduction of heat along a bar of length L is
$$\frac{\partial \theta}{\partial t} = k \frac{\partial^2 \theta}{\partial x^2}$$

neglecting radiation . If the ends of the bar are maintained at zero temperature and if initially the temperature is T at the center of the bar and falls uniformly to zero at its ends. Write the conditions in mathematical form.

C $\,$ In above question 8)B) Find an expression for $\,$ temperature $\,$ heta

[4]