Total No. of Questions - [08	Total	1 No. o	f Questions -	[08]
------------------------------	-------	---------	---------------	------

Total No. of Printed Pages: [02]

G.R. No.	

Paper Code - U218-125(BE-ES)

MAY 2019/ENDSEM

S. Y. B. TECH. (COMPUTER) (SEMESTER - I.)

COURSE NAME: DIGITAL SYSTEMS AND LOGIC DESIGN

COURSE CODE: CSUA21175

(PATTERN 2017)

Time: [2 Hours]

[Max. Marks: 50]

- (*) Instructions to candidates:
- 1) Answer Q.1, Q.2, Q.3, Q.4, Q.5 OR Q.6, Q.7 OR Q.8
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed
- 4) Use suitable data where ever required
- Q.1) a) Simplify the four variable Boolean function using Quine McCluskey $f(a,b,c,d)=\sum m(0,1,2,5,6,7,8,9,10,14)$.

מר

b) Simplify the following Boolean expression and note the Boolean or [6] DeMorgan's theorem used at each step. Put the answer in SOP form.

$$F_1 = \overline{(\overline{X} \cdot \overline{\overline{Y}}) \cdot (\overline{Y} + Z)}$$

Q.2) a) Design an excess-3 code to BCD converter. Use logic gates as per your [6] design and requirement.

OR

- b) Implement a 2 Bit Comparator along with truth table, k-map and logic [6] diagram using gates.
- Q.3) a) Draw and explain 2-bit Asynchronous Counter.

[6]

[6]

OR

[6]

b) Differentiate between synchronous and asynchronous counters along with diagram.

Q.4)	a)	Write VHDL Code for a Full Adder.			
		OR			
	b)	List and explain different types of modelin	g style of VHDL?	[4]	
Q.5)	a)	a) Implement the following Boolean functions using PAL. A=XY+XZ'A=XY+XZ' A=XY'+YZ'			
	b)	Write short notes on: PAL AND PLA?		[4]	
	c)	Implement the following Boolean of programmable array logic (PAL) X=AB+AC' Y= AB' + BC'	expression with the help	[4]	
		•			
		OR			
Q.6)	a)	Draw the architecture for PAL and PLA.		[6]	
	b)	What are the applications of PLD's?		[4]	
	c)	Write short note on PLD'S		[4]	
O 7)	ما	Evaloin Andria a sushit start 1 4 11			
Q.7)	a)	Explain Arduino architecture in detail.		[6]	
	b)	Write short note on soldiering techniques?			
	c)	What is the classification of logic families?	Explain any two?	[4]	
		OR			
(8.Ç	a)	Explain the parameter to characterize logic	families.	[6]	
	b)	What are the applications of Raspberry pi?		[4]	
	c)	Explain CMOS and RTL?		[4]	