G.R. No.	~ .			anta a Anna 👡
3.10.	Paper Code-	11916	-121	(RF-FC)
	inforcare-	0 570	101	(19)

MAY 2019/ENDSEM

S. Y. B. TECH. (E&TC ENGINEERING) (SEMESTER - I)

COURSE NAME: Engineering Mathematics III

COURSE CODE: ETUA21171

(PATTERN 2017)

Time: [2 Hours]

[Max. Marks: 50]

Instructions to candidates:

- 1) Answer Q.1, Q.2, Q.3, Q.4, Q.5 OR Q.6, Q.7 OR Q.8
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed
- 4) Use suitable data where ever required

Q.1 A Solve $(D^2 + 4)y = \sec 2x$ (by variation of parameters) OR B Solve $x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 5y = x^2 \sin(\log x)$ Q.2 A Using Fourier integral representation, show that $\int_0^\infty \frac{\lambda^3 \sin \lambda x}{\lambda^4 + 4} d\lambda = \frac{\pi}{2} e^{-x} \cos x, \text{ where } x > 0$ OR B Find Z^{-1}	6
Solve $x^2 \frac{dy}{dx^2} - 3x \frac{dy}{dx} + 5y = x^2 \sin(\log x)$ Q.2 A Using Fourier integral representation, show that $\int_0^\infty \frac{\lambda^3 \sin \lambda x}{\lambda^4 + 4} d\lambda = \frac{\pi}{2} e^{-x} \cos x, \text{ where } x > 0$ OR	+
Using Fourier integral representation, show that $\int_{0}^{\infty} \frac{\lambda^{3} \sin \lambda x}{\lambda^{4} + 4} d\lambda = \frac{\pi}{2} e^{-x} \cos x, \text{ where } x > 0$ OR	6
В	6
	-
$\left \text{Find} Z^{-1} \left \frac{z^3}{(z-1)\left(z-\frac{1}{2}\right)^2} \right \right $	6
Q.3 A The first four moments of a distribution about the value 4 are -1.5, 17, -30 and 108. Calculate the first four central moments, mean, standard deviation, coefficient of skewness and kurtosis	6
OR	
B On an average a box containing 10 articles is likely to have 2 defective s. If we consider a consignment of 100 boxes, how many of them are excepted to have 3 or less defectives	6
2.4 A Show that $\overline{F} = (6xy+z^3)i+(3x^2-z)\overline{j} + (3xz^2-y)\overline{k}$ is irrotational. Find scalar ϕ such that $\overline{F} = \nabla \phi$	4
OR	

	T	Find the directional derivative of the function $\theta = m + n r^2$ from the	
		point $(1,-1,1)$ towards the point $(2,1,2)$	4
Q.5	A	Find line integral for a vector point function	
	n 2	$F = 3x^2\bar{i} + (2xz - y)\bar{j} + z\bar{k}$ over the curve $x = 2t^2$, $y = t$, $z = 4t^2 - z$	5
		t. From t=0 to t=1.	
	B	Evaluate	4
i es		$\iint_{S} (x^3 \overline{i} + y^3 \overline{j} + z^3 \overline{k}) \bullet d\overline{s}, \text{ where sis the curve of the sphere } x^2 + y^2 + z^2 = 16.$	T
	C	Verify Stokes theorem for:	+
		$\overline{F} = xy^2\overline{i} + y\overline{j} + xz^2\overline{k}$ for the surface of the rectangular lamina bounded	4
		by $x=0$, $y=0$, $x=1$, $y=2$, $z=0$.	1.
	\dagger		
Q.6	A	OR Verify Green's Theorem for	
		$\overline{F} = x\hat{i} + y^2\hat{j} \text{ over the first quadrant of the circle } x^2 + y^2 = a^2.$ Using Stake's Theorem	6
	В	Using Stoke's Theorem evaluate following line integrals:	4
			7
		$\int_C (y dx + z dy + x dz)$ where C is the curve of intersection of $x^2 + y^2 + z^2 =$	
	C	$a^2 \text{ and } x + z = a.$	
	\ C	Evaluate $\iint_{S} (y^2 z^2 \bar{\imath} + z^2 x^2 \bar{\jmath} + x^2 y^2 \bar{k}) . d\bar{S}$ where S is upper part of the	4
		sphere	
		$x^2 + y^2 + z^2 = 9$ above the XOY plane.	
Q.7	Α	Evaluate following integrals using Cauchy-Residue Theorem	6
		$\oint_{C} \frac{z^{3}-5}{(z+1)^{2}(z-2)} dz \text{ where C: } z = 3$	U
	В	Show that analytic function $f(x)$	
	D	Show that analytic function $f(z) = u + iv$ is constant if modulus of $f(z)$ is constant	4
	С	Find the map of the straight line $2y = x$ under the transformation	4
		$W = \frac{2z-1}{2z+1}$	4
		OR	
Q.8	A	Evaluate following integrals using Cauchy-Integral formula.	
		$\int_{C} \frac{z^{2}+1}{z-3} dz \text{ where } 1) C \text{ is the circle } z-2 = 2$	6
		2) C is the circle $ z = 2$	1
	В	Find an analytic function $f(z) = u + iv$ if	
	-	$u + v = e^{x}(\cos y - \sin y)$	4
	C	Find the bilinear transformation which maps the points 1,I,2i of the	4
		z – plane on to the points -2i, 0,1 of the w – plane	4