Total No. of Printed Pages: 043

G.R. No.

Paper Code- U218-134 (BE-FF)

MAY 2019/ENDSEM

S. Y. B. TECH. (E&TC) (SEMESTER - I)

COURSE NAME: Semiconductor Devices & Circuits

COURSE CODE: ETUA21174

(PATTERN 2017)

Time: [2Hours]

[Max. Marks: **50**]

(*) Instructions to candidates:

- 1) Answer Q.1, Q.2, Q.3, Q.4, Q.5 OR Q.6, Q.7 OR Q.8
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed
- 4) Use suitable data where ever required
- Q.1)a) Explain voltage divider biasing circuit with neat circuit diagram and write its equations. [6 marks]

OR

b) Calculate the Q point values of I_B , Ic and V_{CE} for the voltage divider bias circuit, if V_{CC} =12 V, R_1 =8K Ω , R_2 =4 K Ω , R_C =1K Ω and R_E =1 K Ω . Assume silicon transistor with β = 50.

[6 marks]

Q. 2) a) N-channel JFET common source amplifier without bypass capacitor has $R_G=1M\Omega$, $R_D=50K\Omega$, $R_S=1$ $K\Omega$, $g_m=2mA/V$, $r_d=10K\Omega$, Determine A_v , R_i and R_o .

[6 marks]

OR

b) Draw and explain transfer characteristics and output characteristics of n-channel JFET.

[6 marks]

Voltage divider biasing circuit using n-channel E-MOSFET has V_{DD} = 5V, R_1 =30 K Ω , R_2 = 20 K Ω , R_D = 20K Ω , V_T = 1V, K_n = 0.1 mA/v². Determine the co-ordinates of Q point such as V_{DSQ} , V_{GSQ} and I_{DQ} .

[6 marks]

OR

- b) Explain following non-ideal effects for MOSFET.
 - i) finite output resistance
 - ii) Temperature effect

[6 marks]

Q. 4) a) For CS amplifier using MOSFET determine g_m , I_D and r_o if V_T = [4 marks] 1 V, K_n = 0.8 mA/V², λ = 0.01 /V, V_{GSQ} = 3V.

OR

b) Draw complete AC equivalent model for n-channel MOSFET CS amplifier with bypass capacitor. Write small-signal voltage gain expression for CS amplifiers.

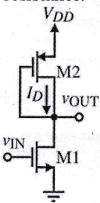
[4 marks]

Q. 5) a) Draw and explain current sink and current source circuit using n-channel MOSFET.

[6 marks]

b) Draw MOSFET as a practical switch model. Explain the significance of each component.

[4 marks]


c) Explain in detail MOS act as a active diode and resistor with neat circuit diagram.

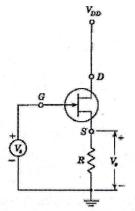
[4 marks]

OR

Q.6) a) For the CMOS amplifier shown in figure, the parameters are: $V_{TN}=1~V,~V_{TP}=-0.8~V,~k'_n=80~\mu A/V^2,~k'_p=40~\mu A/V^2,~(W/L)_1=80,~(W/L)_2=1,~andV_{DD}=3.3~V.~\lambda_n=0.02~V^{-1}$ and $\lambda_p=0.01~V^{-1}.$ Drain current, $I_D=0.1~mA.$ Determine the small-signal voltage gain and output resistance.

[6 marks]

b) Sketch NMOS source follower amplifier circuit and its small-signal equivalent circuit. Write expression for small-signal voltage gain and output resistance.


[4 marks]

c) Explain CMOS inverter as a amplifier with neat circuit diagram

[4 marks]

Q. 7) a) For the FET source follower circuit, calculate values of Avf, R_{if} , R_{of} and R'_{of} . Assume g_m = 2 mA/V and r_d = 40 K Ω and R=4.7K Ω .

[6 marks]

b) A Colpitts Oscillator circuit having two capacitors of 24nF and 240nF respectively are connected in parallel with an inductor of 10mH. Determine the frequency of oscillations of the circuit.

[4 marks]

c) An amplifier has open loop gain of 100 and it's lower and upper cut off frequency of 100 Hz and 100 KHz respectively. A feedback network with feedback factor of 0.99 is connected to the amplifier. Calculate the new lower and upper cut off frequencies.

[4 marks]

OR

Q. 8) a) Draw block diagram of voltage series and current series feedback topology.

[6 marks]

b) Draw neat circuit diagram of Colpitt oscillator and explain in detail.

[4 marks]

c) Draw circuit diagram and AC equivalent of voltage series feedback amplifier and write its final expression for ac parameters.

[4 marks]

Dage 3 of 3