Total No. of Printed Pages: 04

G.R. No. Paper Code - U218-134 CBE-ES

MAY 2019/ENDSEM

S. Y. B. TECH. (E&TC) (SEMESTER - I)

COURSE NAME: Semiconductor Devices & Circuits

COURSE CODE: ETUA21174

(PATTERN 2017)

Time: [2Hours]

[Max. Marks: 50]

- (*) Instructions to candidates:
- 1) Answer Q.1, Q.2, Q.3, Q.4, Q.5 OR Q.6, Q.7 OR Q.8
- Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed
- 4) Use suitable data whereever required
- Q.1) a) Voltage divider circuit uses silicon transistor with $\beta=50$, V_{cc} =20V and R_c =5K Ω .It is desired to establish a O point at V_{CE}=11.5V, I_c=1.5mA and stability factor =3. Determine R_E, R₁ and R₂.

b) Draw Hybrid equivalent model using transistor for CE configuration and write the significance of each parameter. [6 marks]

[6 marks]

Q. 2)a) The self-bias circuit using n-channel JFET has VDD=18V, $R_D=4.7K\Omega, R_S=1.5K\Omega$ and $R_G=1M\Omega.Determine$ the coordinates of Q point such as IDQ, VGSQ and VDSQ. Assume JFET has $V_P = 4V$, $I_{DSS} = 8mA$ and $g_m = 5mS$.

b) Explain with neat circuit diagram the self biasing circuit for n-channel JFET

[6 marks]

[6 marks]

Voltage divider biasing circuit using n-channel MOSFET has $V_{DD} = 40V$, $R_1=22$ $M\Omega$, $R_2=18$ $M\Omega$, $R_D=3K\Omega$, $R_S=820$ Ω , V_{TH}=5V, I_{D(ON)}=3 mA and V_{GS(ON)}=10 V. Determine the coordinates of Q point such as VDSQ, VGSQ, and IDQ.

[6 marks]

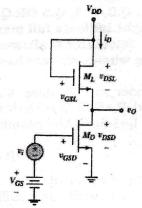
b) Explain the working principle of n-channel enhancement MOSFET along with its constructional diagram.

[6 marks]

Page 184

[4 marks]

Q. 4) a) Draw complete AC equivalent model for n-channel MOSFET CS amplifier with bypass capacitor and without bypass capacitor. Write small-signal voltage gain expression for both CS amplifiers.


OF

b) For CS amplifier using MOSFET determine g_m , I_D and r_o if V_T = 1 V, K_n = 0.8 mA/V², λ = 0.01 /V, V_{GSQ} = 3V.

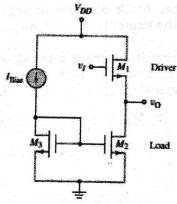
[4 marks]

Q. 5) a) Design an NMOS amplifier with an enhancement load shown in figure to provide a small-signal voltage gain of |Av| = 10. The Q-point is to be in the center of the saturation region. Determine V_{GSQ} and V_{DSQ} of driver transistor. The circuit is to be biased at $V_{DD}=5$ V. NMOS transistors with parameters $V_{TN}=1$ V, $k'_{n}=60$ $\mu A/V^{2}$, and $\lambda=0$ are available. The minimum width-to-length ratio(W/L)minis = 2.

[6 marks]

b) Draw MOSFET as a practical switch model. Explain the significance of each component.

[4 marks]


c) Draw current source circuits. Explain how to improve its output resistance.

[4 marks]

OR

Q. 6)a) The transconductanceg_{m1}of the transistor M_1 in the circuit of figure is to be changed by changing the bias current such that the output resistance of the circuit is R_0 = 2 k Ω . Assume the bias voltage is V_{DD} = 3.3 V. Assume that all transistors are matched with parameters V_{TN} = 0.4 V, K_n = 0.20 mA/V², and λ = 0.01 V⁻¹. The drain current in M_1 is I_{D1} = I_{Bias} = 0.2 mA. (a) What are the required value of g_{m1} and new value of I_{Bias} ? (b) Using the results of part (a), what is the small-signal voltage gain?

[6 marks]

b) Sketch CMOS common-gate amplifier circuit and its small-signal equivalent circuit. Write expression for small-signal voltage gain and output resistance.

[4 marks]

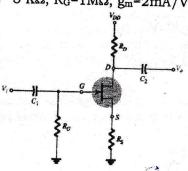
c) Explain with neat diagram the working principle of current mirror circuit?

[4 marks]

- Q. 7) a) Draw block schematic of following feedback topologies:
 - i) Voltage series feedback topology
 - ii) Current shunt feedback topology

[6 marks]

b) Explain Barkhausen criteria to obtain sustained oscillations at the output.


[4 marks]

c) Explain Hartley oscillator with neat circuit diagram. Also writeit's cut off frequency expression.

[4 marks]

OR

Q. 8) a) For current series feedback amplifier, determine G_{mf} , A_{vf} , R_{if} , R'_{of} if R_s =1 $K\Omega$, R_D =5 $K\Omega$, R_G =1 $M\Omega$, g_m =2mA/V and r_o =20 $K\Omega$. [6 marks]

Page 3 704

- b) Draw the block diagram of negative feedback amplifier and derive the expression for feedback gain Avf.
- c) Draw circuit diagram and AC equivalent of voltage series feedback amplifier and write it's final expression for ac parameters.

[4 marks]

[smarks

Page 4 264