Total	No	of	Questions	80.1	
Iutai	TAO.	OI	Questions	100	

Total No. of Printed pages 02

G.R. No.	

Paper Code-U218-144 (BE-FS)

MAY 2019/ENDSEM

S. Y. B. TECH. (I.T.) (SEMESTER - I)

COURSE NAME: FUNDAMENTALS OF DATA STRUCTURES

COURSE CODE: ITUA21174

(PATTERN 2017)

Time: [2 Hours]

[Max. Marks: **50**]

- (*) Instructions to candidates:
- 1) Answer Q.1, Q.2, Q.3, Q.4, Q.5 OR Q.6, Q.7 OR Q.8
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed
- 4) Use suitable data where ever required
- 5) Write suitable examples wherever necessary.
- 6) Draw suitable diagrams if required.
- Q-1 a) Explain any three functions used for file handling in C with syntax and example.

OR

b) Describe the following declarations:

[6marks]

[6marks]

- 1. int *A[10];
- 2. int (*f)(int a[10], int n);
- 3. FILE *fp;
- Q-2 a) Explain static and dynamic data structure with suitable example.

[6marks]

OR

- b) Justify the need to measure performance of algorithm. Explain the [6marks] methods to measure the performance of algorithm.
- Q-3 a) Sort the following values in descending order using selection [6 marks] sort. Write pseudo code for the same.

 SUN, MON, TUE, WED, THURS, FRI, SAT

OR

b) Explain Quick sort algorithm with example. Comment on its complexity.

[6 marks]

Q-4 a) Explain Memory representation and address calculation for a 1-D [4 marks]

and a 2-D array with suitable example for each. **OR**

	b)	Write a C code for fast transpose of a sparse matrix and write its complexity.	[4 marks]
Q-5	a)	Compare the linked and sequential organization of data structure.	[6 marks]
	b)	Write a function in C for inserting element 7 in the given sorted linked list 1->2->3->4->5.	[4 marks]
	c)	Give node structure of circular linked list. Compare SLL and CLL.	[4 marks]
		OR	
Q-6	a)	Write a C function that creates a new linked list by selecting alternate elements of given singly linked list. Give example.	[6 marks]
	b)	Write a recursive function in 'C' to count all the nodes in doubly linked list.	[4 mark
	c)	Explain linked list as ADT.	[4 marks]
Q-7	a)	Convert infix to prefix. Show stack contents. (A+B)*C-D*F+C	[6 marks]
	b)	Write and explain any 2 applications of queue with example.	[4 marks]
	c)	Differentiate stack and queue data structure. OR	[4 marks]
Q-8	a)	Write a C function for push and pop operation of stack using array.	[6 marks]
	b)	For a doubly ended queue:,, 10, 11, 12, 13,,,	[4 marks]
		Front=3 rear=6	
		What will be the output after operations:	
		Enque_front(9);	
		Enque_rear(14);	
		Enque_rear(15);	
		Deque_front();	
		Deque_front();	
		Enque_rear(18);	
	c)	Write algorithm to convert infix to postfix expression.	[4 marks]