Total No. of Questions - [8]

Total No. of Printed Pages: 2

G.R.	No.

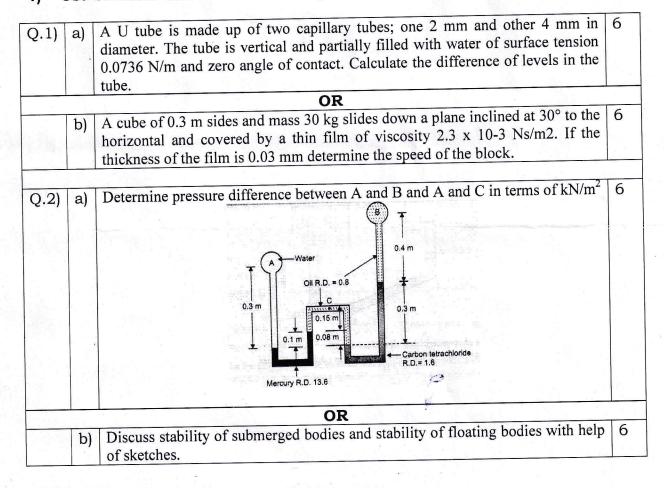
papercodes V228-113 (RE-FF)

MAY 2019/ENDSEM RE-EXAM

S. Y. B. TECH. (Civil) (SEMESTER - II)

COURSE NAME: Fluid Mechanics - I

COURSE CODE: CVUA 22173


(PATTERN 2017)

Time: [2 Hours]

[Max. Marks: 50]

(*) Instructions to candidates:

- 1) Answer Q.1, Q.2, Q.3, Q.4, Q.5 OR Q.6, Q.7 OR Q.8
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed
- 4) Use suitable data where ever required

0.21		What is flow r	at? What are the m	othods of drawing	flow not? Explain electrical	6	
Q.3)	a)	What is flow net? What are the methods of drawing flow net? Explain electrical analogy method for drawing flow net				0	
1	W.		STOL: 1215	ORIOizzimdu2 t		la.c.	
. A. 1	b)				ts of rotation. Prove that	6	
al Se		vorticity is equ	al to twice the rotat	tion component pe	r unit area		
	r and a start		r. mundahad	e Name: Fluid	Cours	4	
Q.4)	a) _.	Find out discharge through a Venturimeter with inlet diameter of 10 cm an throat diameter of 5 cm carrying oil of specific gravity 0.8 when the deflectio of oil mercury manometer is 30 cm. Assume coefficient of the meter as 0.95					
			•	OR			
	b)	Classify Orifice according to shape, nature of edge, size and condition of discharge. Draw sketches to supplement your answer				4	
			3-				
Q.5)	a)	A smooth flat plate is exposed to wind velocity of 6 km/minute. If the laminar boundary exists upto a value of Re=2 x 10^6 find the maximum distance upto which laminar boundary layer exists and its maximum thickness. Assume kinematic viscosity of air = $1.5*10^{-5}$ m ² /s			6		
	b)	Define nominal thickness, displacement thickness, momentum thickness and laminar sub-layer of boundary layer			4		
	c)	Calculate the loss of head in a pipe having diameter of 15 cm and length of 2				4	
		km. It carries laminar flow of oil of specific gravity 0.85 and viscosity of 6 stokes at the rate of 30.48 lps					
30.1				OR			
Q.6)	a)	Prove that velocity distribution for the steady laminar flow between fixed parallel plates is parabolic				6	
	b)	Explain boundary layer separation and its control				4	
	c)	Draw a neat sketch of Redwood viscometer showing all parts				4	
					<u> </u>		
Q.7)	a)	Two pipes are connected in parallel. Following are the details of these pipes				6	
2.1)	<i>(u)</i>		Diameter	Length	Friction Factor		
		Pipe A	0.75m	1000m	0.018	erroga	
		Pipe B	1m	750m	0.020	1	
		If total discharge of 1 m^3/s is distributed into pipe A and B, determine the					
		discharge in each pipe					
	b)	Write step by step procedure for Hardy Cross method of pipe network analysis				4	
	c)	Discuss three reservoir problem.			4		
1.4	· ·		•	OR			
Q.8)	a)	What are various losses in the pipe? Give the expression for each.				6	
<u> </u>	b)	A compound piping system consists of 1800 m of 50cm, 1200 m of			4		
	~,	40 cm and 600 m of 30 cm diameter pipes of the same material connected in					
		series. What is the equivalent length of a 40cm pipe of the same material					
	0	Write short note on Hydrodynamically smooth and rough pipes					
	(C)	write short no	ne on nyuroaynami	carry smooth and i	lough pipes	4	