Total No. of Questions – [8]

Total No. of Printed Pages - 3

G.R. No.	

paper code: U228-131(RE-FF)

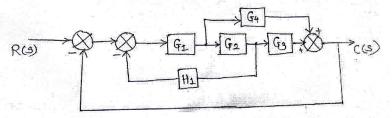
MAY 2019/ENDSEMRE EXAM

S. Y. B. TECH. (\mathbb{E} \mathbb{E}) (SEMESTER - I)

COURSE NAME: CONTROL SYSTEMS

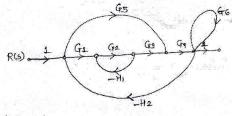
COURSE CODE: ETUA22171

(PATTERN 2017)


Time: [2 Hours]

[Max. Marks: 50]

(*) Instructions to candidates:


- 1) Answer Q.1, Q.2, Q.3, Q.4, Q.5 OR Q.6, Q.7 OR Q.8
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed
- 4) Use suitable data where ever required

Q.1) a) Find closed loop transfer function of the given system, if $G_1=G_2=\frac{1}{s+1}$ and $G_3=G_4=s+1$, H1=1 [6 marks]

OR

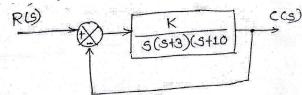
 b) Using Mason's Gain formula, calculate transfer function of the given system.
[6 marks]

Q.2) a) Derive and sketch the response of first order system for i) unit step ii) unit impulse excitation. [6 marks]

OR

b) For the unity feedback system with open loop transfer function

 $G(s) = \frac{K}{s(s+1)(1+0.4s)}$. i) Find type and order of the given system.


ii) if r(t) = 4t and K = 2, determine steady state error.

iii) If the desired value of steady state error is to be 0.2, find corresponding K.

[6 marks]

- Q.3) a) The open loop transfer function of a unity feedback system is given by $G(s) = \frac{80}{s (s+2)(s+20)}$. Draw bode plot. Show ω_{gc} , ω_{pc} . [6 marks] **OR**
 - b) The open loop transfer function of a unity feedback system is given by $G(s) = \frac{40}{(s^2+2s+1)(s+4)}$. Draw Nyquist plot. Find gain margin and comment on stability. [6 marks]
- Q.4) a) For the system shown, determine -

[4 marks]

- i. Range of K for stability
- ii. Marginal value of K
- iii. Frequency of Sustained oscillations

OR

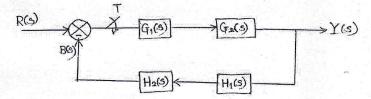
- b) Sketch the root locus for a unity feedback system whose open loop transfer function is $G(s) = \frac{k}{s(s+2)(s+10)}$. (Detailed calculations not required) [4 marks]
- Q. 5) a) Obtain state space representation of the given system using controllable canonical form. Write state space equation for Observable canonical form. $T(s) = \frac{2}{s^{3}+2s^{2}+4s+8}$ [6 marks]

b) Investigate for complete state controllability and complete state observability for the system [4 marks]

$\dot{x}(t) = \begin{bmatrix} -2 \\ 0 \end{bmatrix}$	$\begin{bmatrix} -2 \\ -1 \end{bmatrix} x(t) + $	$\begin{bmatrix} 3\\1 \end{bmatrix}$ u(t)
•	-	

y(t) = [1 - 1]x(t)

c) Find the transfer function of the system with state space model matrices, $A = \begin{bmatrix} -2 & -2 \\ 0 & -1 \end{bmatrix} B = \begin{bmatrix} 3 \\ 1 \end{bmatrix} C = \begin{bmatrix} 1 & 0 \end{bmatrix}$ [4 marks] OR

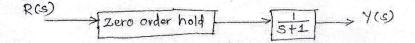

Q.6) a) Find state transition matrix if $A = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}$ in x(t) = Ax(t). Also find x(t), if $x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ [6 marks]

b) Draw state space diagram of the given system using parallel form realization. T(s) = $\frac{s(s+2)}{s^3+8s^2+19s+12}$ [4 marks]

c) What is state transition matrix? Write any four properties of S. T. M.

[4 marks]

- Q.7) a) Explain block diagram of Digital control system. Draw its mathematical model. [6 marks]
 - b) Obtain Pulse transfer function of following system using starred Laplace transform. [4 marks]



c) Write a short note on Programmable Logic Controller

[4 marks]

OR

Q.8) a) Find pulse transfer function and impulse response of following system. [6 marks]

b) Explain advantages of Digital control system over analog control system. [4 marks]
c) Write a short note on PID system. [4 marks]

0