G.R. No.

paperlocle: Lomp! U228-121 (RE-FF)
MAY 2019/ END-SEM REEXAM IT: U228-141 (RE-FF)

S. Y. B. TECH. (COMPUTER/IT ENGINEERING) (SEMESTER - II)

COURSE NAME: ENGINEERING MATHEMATICS III

COURSE CODE: CSUA22171/ITUA22171

(PATTERN 2017)

Time: [2 Hours]

[Max. Marks: 50]

- (*) Instructions to candidates:
- 1) Answer Q.1, Q.2, Q.3, Q.4, Q.5 OR Q.6, Q.7 OR Q.8
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed
- 4) Use suitable data wherever required

Q.1 A Solve
$$\frac{d^2y}{dx^2} + y = \cot x$$
 (by variation of parameters)

OR

B Solve
$$(2x+1)^2 \frac{d^2y}{dx^2} - 2(2x+1) \frac{dy}{dx} - 12y = 8x$$

[6]

[6]

[6]

[6]

[6]

[6]

Q.2 A Solve the difference equation: 6f(k+2)-5f(k+1)+f(k)=0, $k \ge 0$ f(0)=0, f(1)=3

I(1) = 0

В

Solve the integral equation : $\int_{0}^{\infty} f(x) \cos \lambda x \, dx = \begin{cases} 1 - \lambda & 0 \le \lambda \le 1 \\ 0 & \lambda \ge 1 \end{cases}$

and hence show that : $\int_{0}^{\infty} \frac{\sin^{2} z}{z^{2}} dz = \frac{\pi}{2}$

Q.3 A Calculate the first four moments about the mean of the given distribution . Also find β_1 and β_2 .

x	2.0	2.5	3.0	3.5	4.0	4.5	5.0
f	4	36	60	90	70	40	10
1	1	00	100	OD			7

OR

B Obtain regression line for the following data:

X	6	2	10	4	8
V	9	11	5 5	8	7

Q.4 A Apply forth order Runge-Kutta method : $\frac{dy}{dx} = 3x + \frac{y}{2}$

y(0)=1 determine y(0.1). Taking h=0.1.

[4]

Solve the equation $\frac{dy}{dx} = x^2 + y$

		dx	[4]
		y(0)=1 determine y at x=0.1, using Euler's Modified method taking h=0.05.	[4]
Q.5	Α	Show that the vector field $\vec{F} = (2xz^3 + 6y)\vec{i} + (6x - 2yz)\vec{j} + (3x^2z^2 - y^2)\vec{k}$ is irrotational .Hence	[6]
		find corresponding scalar potential ϕ such that $\overline{f} = \nabla \phi$	
	В	Find the directional derivative of $\varphi = e^{2x - y - z}$ at the point P(1,1,1,) in the direction of the	
		tangent to the curve $x = e^{-t}$, $y = 2\sin t + 1$, $z = t - \cos t$ at $t = 0$.	[4]
	С	Evaluate $\int \overline{F} \cdot d\overline{r}$ for $\overline{F} = 3x^2\overline{i} + (2xz - y)\overline{j} + z\overline{k}$ along the straight line joining $(0,0,0)$ to $(1,2,3)$	[4]
		c	
		OR	
Q.6	A	If the directional derivative of	
		$\varphi = ax^2y + by^2z + cz^2x$ at $(1,1,1)$ has maximum magnitude 15 in the direction parallel to	
4		$\frac{x-1}{2} = \frac{y-3}{-2} = \frac{z}{1}$ then find the values of a, b, c.	[6]
	В	Prove that $\frac{\overline{a} \times \overline{r}}{r^n}$ is solenoidal	[4]
	С	Evaluate $\iint \vec{f} \cdot d\vec{s}$, where S is the sphere $x^2 + y^2 + z^2 = 9$ and	
		$\overline{F} = (4x + 3yz^2)\overline{i} - (x^2z^2 + y)\overline{j} + (y^3 + 2z)\overline{k}$	[4]
		F = (4x + 3yz) 1 - (x z + y) j + (y + 2z) k	
Q.7	A	$\sin -2 + 2\pi$	
		Evaluate $\oint \frac{\sin \pi z^2 + 2z}{c(z-1)^2(z-2)} dz$ where c is the contour $ z = 4$	[6]
			[6] [4]
	В	If $f(z)=u+iv$ is analytic, find $f(z)$, if $u-v=(x-y)(x^2+4xy+y^2)$ Find the bilinear transformation which maps the points 1, i, -1 from z-plane on to the points	[1]
	C	i,0,-i of the w-plane.	[4]
		OR	
8.5	A	Evaluate $\oint \frac{z+3}{c(z+1)^2(z-2)} dz$ where c is boundary of the square with vertices $\pm 1.5, \pm 1.5i$.	[6]
	В	Determine the analytic function $f(z)$ whose real part is $u=x^3-3xy^2+3x^2-3y^2+1$.	[4]
	С	Find the mapping of straight line y=x under the transformation $w = \frac{z-1}{z+1}$	[4]